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AN AVERAGING THEOREM FOR DISTRIBUTED CONSERVATIVE SYSTEMS 

AND ITS APPLICATION TO VON KARMAN'S EQUATIONS* 

S.B. KUKSIN 

An averaging theorem, of the Krylov-Bogolyubov-Mitropols'kii type, 
is proved for oscillatory processes in spatially-multidimensional 
conservative systems. VOn Kirman's equations are considered as an 
exanple. 

1. Stateme& of the pPol?tmn. OSCillatOry processes in distributed conservative 
systems can be described by means of Hamiltonian equations in an infinite-dimensional phase 
space Z equipped with a symplectic structure /l-3/. As in the finite-dimensional case /4/, 
writing the equations in Hamiltonian form is equivalent to expressing them as variational 
p,rinCipleS (the latter approach is much more popular for the equations of mechanics of 
continuous media; see, e.g.,, /5/). 

Equipping 2 with a SympleC+C StrUCtUre is equivalent to defining a Poisson bracket 
i[R;, &1 for functionals H,, H, :Z-+R (see /Z-4/). In the ShIpleSt case, 2 is a Hilbert 
space with scalar product (., .) and the Poisson bracket is 

IH*, &I (n) = <OH,, JVH, (u)>. Ufz 2 U-f) 

Here J is CUr.antiselfadjoint operator in Z (possibly non-bounded) and p is the gradient 
relative to the scalar product in Z, i.e., 

H1 (u + au) = H, (u) + e <VH, (4, v> -I- 0 (e) 

With tnis symplectic structure 
Hamiltonian equation: 

I a functional H on Z is associated with the following 

U' = JVZ (u), u = u (t) E 2 (1.2) 

In most cases z = .G(B; RN), where Q is an n-dimensional region In> f), and H is 

a functional of variational calculus /l, 2, 5/. Then V_# (u) = ~H/~u(x) is the variational 

derivative of H. A more complicated example of an infinite-dimensional symplectic space is 
presented below (Sect.3), in connection with von K&-m&r's equations. 

We will consider the problem of small oscillations in System (1.2). To that end we 

focus our attention on the quadratic term in H and substitute U =sZ. This gives an equation 

for z (1). with: Hamiltonian Ho (z) = <AZ, 2>/2 f eHb (2, 81, where A is a selfadjoint operator: 

z* = J (AZ + eVffd (2. E)) (1.3) 

We shall assume that the spectrum of the operator JA is pure imaginary. 
An averaged m-th approximation solution (m> 8) of Eq.Cl.3) is defined as a curve 

z* (0 which for O,< t< L(e), where F~(&)+co as: E-+0, differs from the exact solution 

z 0) by 0 (em) /6/. 
The averaging problem for equations of type (1.3) describing OSCilhtiOnS Of spatially 

one-dimensional systems has been intensively researched (see, e.g., /7, 8/ and the 
bibliography therein); Maslov and his students have averaged the solutions Of equations of 
type (1.2) with rapidly oscillating initial conditions /9, 1%'. 

Our purpose in this paper is to average Eqs.(1.3) without assuming that the System is 
spatially one-dimensional. More precisely, we wish to construct averaged trajectories of 
(1.3) corresponding to non-resonant conditionally periodic solutions of the unperturbed 

linear equation 
z'=JAz $4) 

(i.e., solutions of Eq.(1.4) under which a finite number of modes are excited). Solutions 

of Eq.tl.3) that are close to conditionally periodic solutions of (1.4) must also be found 
when one is studying oscillations in non-autonomous Hamiltonian systems of the form 

z' : J/iZ -+- EJyff, (2% W,t. . . ., W,t) (1.5) 

oj~R, i =1,....n 

where the Hamiltonian H~(z, cl,..., in) is Zn-periodic in ct...., L. 
In fact, we define auxiliary cyclic variables gr, . . . . I,,, g = (a, . ., qn) E 2-L = H’“+IZ’), 

and variables (I,, . . . . I,)= I ER". System (1.5) is equivalent to the autonomous Hamiltonian 
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system with Hamiltonian j.m-+- (-4~. 0/2+ aH,(z, 9) in the extended phase space p X BnX 2: 

p; = oj, Ij’ = - e-& 8, (z. q), Z’ = J (AZ + eV,E (2, 6) (W 

System (1.6) in turn is equivalent'to a certain autonomous system of type (1.3) in the 
space B!z" ‘< z , considered in the neighbourhood of a conditionally periodic solution of the 
linear system (see Eq.(4.1) below). 

Let us assume that Z is spanned by an orthonormal basis (@Ii =1,2,...} with the 
following properties: 

A) I(@= + hjJ@, Aqj* = hjAqjF? vj > 1, 

B) hjA = K,j*A f o(jdA), hjJ = &jdJ + O(jdJ), ~A,~J>,O . 

In particular, the operator JA has a pure imaginary spectrum (*iA, ljp i), where 
hl = h,.,k,J = K,,j”l + 0 (idI), d, = d.4 + dJ. Hence all solutions of Eq.(1.4) are almost periodic 
functions of time, and the solutions corresponding to excitation of only a finite number of 
modes are conditionally periodic. 

For example, solutions in which the first n modes are excited are 

Z (t) = kill/%(COS(hkt f vk)‘Pk+ f sin takt + vk)(Pk-) 

Vk~z[o,2~), hk=hkAhkJy Ik>Ov k=l,...,n 

0.7) 

The trajectory (1.7) lies on an n-dimensional torus 

T*(l) = Q/1+91+ + y,-cp,- + * * * + Yn-Cpn- 1 Yj” + Yi’ = 21jt Vjl C z 

It turns out (see Sect.2, Theorem 1) that under certain conditions implying lack of 
resonance, if the initial condition u,of Eq.(1.3) is distant from T" (0 by a quantity of 
the order of ea, O<a<l,. then the averaged trajectory of orderm,O,< m<a, is a curve 
of type (1.7). The frequency vector (a,,. ..,a,,) characterizing the curve is replaced by a 
similar vector o1 e R", which is determined by averaging over T" (I) certain quantities 
derived from the perturbation eHh. 

In Sect.3, as an illustrationof system (1.3), we shall consider von K&-m&n's equations 
for the small oscillations of a thin plate (/ll/, Chap.1, Sect.4; /12/): 

ul” + a,A%, - T/e[ul, u,]’ = 0, a,A%, + l/e[u,, u,]' = 0 

a,, a, > 0, u1 = u1 (t, I), u, = u, (t, z), I = (5, 2%) 

[u, VI' = D,2uD,2v f D,auD,2v - 2D,D,uD,D,v, Di = Wx, 

(1.8) 

Here A2 = AA is the iterated Laplacian (with respect to the variables x). 
System (1.8) is reducible to the form (1.3), and it will follow from Theorem 1 that if 

the initial conditions u1 (O), u1' (0) can be approximated to within ~~,O<a,<1, by sums of 
II eigenfunctions of the operator A%,then there exists one and only one solution for o,<t,< 
L (4 where L (E)> E-‘. The effect of the non-linear increment to the solution "in the 
large" is to modify the natural frequencies of the linear system by quantities of the order 
Of E, while the eigenfunctions themselves remain unchanged, provided that the initial set of 
frequencies is non-resonant. 

2. Statement of the theorem. In the sequel C, C,, C,, . . . will denote various positive 
constants independent of E, and U,(B) will denote the open sphere of radius a>0 
centred at the zero of a Hilbert space B. 

Let Y be the closed linear span in 2 of the vectors {vkf ]k>n + 1). For z= 

x Zk*(Pk'EZ we define 

y(Z) = y,+‘$,+, + y;$i+l+ !,s+(P:+B + * . * 9 Yk* = z?+k 

and define polar coordinates '&, q, in 

5r = (8 + a?)/2 - I,, 

In the neighbourhood of the torus 

qE T” = Rn/(2nZ"), 

the planes (zl+, z,-), I = 1, . . ., n: 

ql = Arg(zl+ + izl-), 1 = 1, . . ..n 

T” (4 in Z we define coordinates (9, E, Y), where 

EE'%(R"), y~Oa(y), 6>0 

Eq.(1.7) has a very simple structure in terms of the coordinates (% E* Y): qk = vk + 
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sh, , 
(see 

% = const, v = 0. Let Z, be the space of elements z =:X+*(PK* with finite norm I(zljg 
(2.1)), and Y, = Yn 2, (in particular, Z, = Z, Y, = Y). By condition B, the operators 

J and A define continuous mappings J :Zt++-+Zt, A :Zl+dA -2, for any tEzR. 

Definition. Let M > 1. A vector q E- R” is said to be M-non-resonant if there 
exists p> 0 such that 

(2.2) 

(2.3) 

Otherwise n is called an M-resonant vector. 

Proposition 1. If d,> 0, h, # 0 for all k> n _t 1 and M>nfd,-‘-1, then the 
set of all M-resonant vectors has measure zero. 

Proof. It will suffice to prove that for p<min(1,inf{/X~j)) and any L>O the set of 
points n E OL(Rn) not satisfying condition (2.2) or (2.3) has measure at most cp, c = C(L). 

The set of points ~EO~(R~) violating condition (2.3) is the union of the layers 

~~,={o~~o,(R”)jI~-~_f~kj<~f~$_Is/)-Ml, s#O 

If ISi<% where uk = max (I,(& - I)&), then , IIS, = 0. But if 1~1>2;~, then the 

measure of the layer is at most c,pI~j-"-~. Therefore 

mc8 !j II? s < Cl7 2 f s l-D’e1 <C2pu~~+n-1 

and by condition B the measure of the union of all non-empty layers is at most 

A similar estimate holds for the measure of the set of points rl= O,(R9 violating 
condition (2.2). 

Let Z,C be a complexification of the space Z, (do R). 

theorem 1. Let conditions A and B be satisfied; assume that d, = d, -t G > 0, a, # 0 
for k>n+1 and 

1) there exists d,>O such that H&(.,f) and VH, (., E) can be continued as 
analytic mappings 

Hb(.q~):&,C--,C, tHa (‘9 E) : &i,’ - -%O+Q (2.4) 

bounded on bounded sets uniformly in E E (0, II; 
2) the vector coo = (X1, . . ., I.,) is M-resonant for some llf>l. 
Let p>o be the number corresponding to @"figuring in the definition of M-non- 

resonance. Then constants h*; and KS exists, independent of p and e, such that if z (0) = 

20 = (PO1 Ear $0) in (1.3) and for some a, @<a,< 1, 

I Eo I + 11 Yo IL < &uP-2 (2.5) 

then for sufficiently small E>O the solution of Eq.(1.3) is such that z(t) and z' (t) 
are bounded in Z, and Z&d,, respectively; it exists and is unique for 0 .c t < L (E) = 
~-1 In e-‘IK,, K, > h’,“. The solution moreover satisfies the estimate 

II z (t) - (Q" -I- tw', 0, 0) Ih, < &Wp-a, o < t < L (4 (2.6) 

where w'~ Rn is the vector with components 

mjx = ?kj + z?hjJ 
S 
~Na(Y.O.O;e)@= S [4j$ He{.; &)~~~,n,~)a~ (2.7) 

T" T” 

and x =x (A?,)> 0, x - 0 as K,-+CQ. 

Remarks. 1’. If M>n+d,-l---1, then it follows from Proposition 1 that the set of 
vectors 00 not satisfying condition 2 has measure zero. 

2O. The second half of condition1 is understood in the sense that estimate (4.2) 
(see below, Sect.4) is valid uniformly in ~E(O, il. 

‘0 
3. Higher-order averages have been constructed only for a few spatially one-dimensional 
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systems of type (1.3) /7, 0/. For such systems hj = Kojdl -I- o (id% d, > i. We showed /13/ 
that in that case the "non-resonant" conditionally periodic solutions of system (1.4) 
correspond to nearly conditionally periodic solutions of system (1.3). 

3. Application8 to Ucm k&If&‘8 eqUation8. For simplicity, we will confine our atten- 

tion of solutions of system (1.8) which are periodic functions of x: 

Uj (t, X1 f 2Jt, x2) S Uj (t, 51, 52 + 2JI) Z Uf (t, x), j = 1, 2 (3.1) 
2X 2X 

1 1 uj(t,x,,x,)dr,dr,~O, j=1,2 (3.2) 
0 0 

By (3.1), the functions u,(t, .),uz(t, -) may be considered defined on a two-dimensional 
torus TX2 = R,2/2nZP. Let Ga denote "Green's operator", i.e., the, operator inverse to A2 
on TX2 under conditions (3.2). It then follows from (1.8) that 

~1" + a,A2u, + .sua-r [ul, G, ([u,, u,l’)l’ = 0 (3.3) 

Let LO2 denote the space of functions in L2(Tx2) with zero average. The operator A': 
defines a selfadjoint positive operator Na in L02with domain H,4(T,y) and a linear iso- 
morphism Nz : Hoe (TX2) + Home (TX2) (where 
functions with zero average; 

H,j (T,')is the subspace of H’(T,*) consisting of the 
Hj are the Sobolev spaces). put 

G2 = G12. 
N, = l/Fz, G, = N,-‘; then 

Put z" = Ho2 (Tr2), 11 u112 = ~[(N,u)~ dx; 2 = z”X z”, 11 (u, ~)ll,” = II u iI2 + 11 u 112. We define in 2 
an antiselfadjoint operator J and a functional HA: 

J (u, v) = (Np, -N,u) (3.4) 

HA (u, u) = ss (G, ([u, ~1’))~ dx (3.5) 

Lemma 1. The functional HA is analytic in Z and 

VH4 (u, u) = 4 (G, [u, Gg [u, ul’l’, 0) (3.6) 

Proof. Given UEZO, let H*,(u) equal the right-hand side of (3.5). To prove the 
lemma it will suffice to show that H,, is analytic on 2' and to determine its gradient. 
Analyticity follows from the estimate H&,(U)]< C]]u]p (see /12, 13/). For U, ~~20 we 
have 

We know /12, 13/ that the trilinear form 

@,U, w)* 5s [u, VI' (z)(u(z) dz 

is symmetric. Therefore, 

df&,(s)~=~S v (z) [u, W]' (2) dx = tu, Gp [IL, Wp, 

where W = 4G, [u, ~1'. Thus VH~,(U) = G,[u, W]', implying (3.6). 
Consider the Hamiltonian 

H, (2) = '1, II a 11: 1/;1 + l/q& &T/G)-' HA (zh z = (4 v) (3.7) 

It has the form of the Hamiltonian of system (1.3) if A is taken to be the operator 

l/&z (1 is the identity operator in Z). By Lemma 1, 

VH, (u, u) = (l/;u + E (u21/G)-’ G, [u, G, lu, d’l’, I/a,+ 

Thus the system corresponding to Ho is 

1~' = 1/G++ U' = --A, (1/z& + en,-'G, Iu,G~ [M, u]']' (3.8) 

If (u, v) is a solution of system (3.81, then u (t, 4 satisfies Eq.(3.3). Thus 
system (1.8) is equivalent to Eq.cl.3) with Hamiltonian (3.7)x, provided that the operator 
figuring in the definition of the Poisson bracket (1.1) is (3.4). Let {+,Ij>i} be a 
complete system of eigenfunctions of the operator N, and N,$J = Pj%j. By the known asymptot 
behaviour of the spectrum of an elliptic differential operator, ELJ = K,j + 0 (i), Therefore, 
if qj+ = (Qj, 0), ‘pj- = (0, I#~). then Jrqj* = T pj(pjF, j = 1, 2, . . ., and the operators & and J 
corresponding to system (3.8) satisfy conditions A and B, withhjJ = u,, hj, = l/al, dA = 0, dJ = 

d, = 1. 

Lema 2. For natural numbers S, the norm in 2, is equivalent to the norm inHy(T,%) X 

Zf? (TX*). 

ic 
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Lem 3. The mapping fHb: Z,+Z,,, is analytic if rn> 2. 
The proof of Lemma 2 follows from the inequalities 

C_'I/@. e /lya GllJ”@, u)IJo2% Cll@o 0) i,*” 
since 

/j&%Ng = 1s 1 iV+]*d~ = ss 1 A"+% [a& 

which is equivalent to the square of the norm in H~iz(T,2), 

To prove Lemma 3, we let l*l. denote the norm in U;J(l',2). Then .{G,(u)&< C I lcis for all 
s. If s 2 2, then i iti7 ul'Is< c, I u lMzj vh, whence it follows that the mapping V~~,,:H0m(T,2)- 
H$+i (F%*) is-analytic for m>4. Together with Lemma 2. this implies the required assertion. 

Thus, system (3.8) satisfies the assumptions of Theorem 1 for d,> 2 and if the 

vector o" = (u PO) 
curves of type"(l:~f 

is non-resonant then the averaged solutions of system (3.8) are 
with h, = oh*, The averaged solutions of Eq.(3.3) axe the curves 

4. PPoof of 2%eoPem 1. To abbreviate the discussion we omit the'dependence of the 
Hamiltonian on e; all estimates in this section kre uniform in a~ (0, iI. 

Transform system (1.3) from the variable z to variables (q, 6, Y)& O,,a = T'" X O,(Rn) X 
06 (Y,), where 

The tangent space to O#,a at an arbitrary point is identified with 2,. 
Isolate the terms in HA that are linear in 5 and 3: 

HA = g (9) + E.4 (d + <Y, ? (4)) -f- Hz (4, 8, !I) 

Modifying Ha by a constant if necessary, we may assume that g ==0 (the bar denotes 

averaging over pi T"). Write the Hamiltonian of system (4.1) as follows: 

H = 6%"-+aFi,) ~5 +%(AY,Y) faRi 

%" = @,,,, * . . ?L4), ffl ==&-I-43 

ff, = g (cd -t E-h (4 + 0~3 ?I M), h = hi - Er, 

continue the functional HA analytically to a complex domain of the form 

where c is a complexification of Y,. 
is true everywhere in O,?_,: 

By condition 1 of Theorem 1, the following estimate 

1 HA (97 & Y) 1 -t- Ii V,Ha (Qf & Y) iid.+dJ < c (4.2) 
Our assertion now follows from (4.2) and the Cauchy inequality. 

Lemnm 4. There exist S,> 0 and constants C,,C,,G, such that for QE&, and 

fq, g, Y) 5 o&, 

Define an auxiliary Hamiltonian e5, where 

s = gil (q) -f- 5*k3 (4) -i- <Y? rlo k)> 

The corresponding canonical transformation S is the displacement per unit time along 
the trajectories of the Hamiltonian system with Hamiltonian &.: 



S is a canonical transformation, taking system (4.1) into the system with Hamiltonian 
p (q. %, !./I = H (S (41 %, YN tsee /3, 411. Write S as fol.lOws: !z-9-l-s$* %H&-tEE1* Y++Y-+- 
a$. Then q1 = P + E..., 5% = PE -+- E..., ~1 = Fy + E.,. . Therefore, pUtting(S %, Y) =I r, (91S %', !?'I = 2' 

and hAn + 6, = WB, we can write the transformed tiamiltonian as 

Let oiERn denote the vector with components Ojl = @j%jJ. Since %, fn) = aHA t% 0, 

owb and for any functional H’ we have [qj, WI = hjJim’& it follows that hjJh,j (q) = Iq,, 

H,l (qv 0, 0). Hence the vector o'is of the form (2.7). 
Equating the expression ,in square brackets to zero, we Obtain homological equations 

for g,,h, and no: 

dg, (dhl = w’-Vgo 04 = g 68 -I- &Ag kh ah, (cl)iad = h (q) + 
EAh (4 

a710 (q)la~l - Ah (4 - 71 (4 + cA.r (4 

where ehg, eAh and sArJ are admissible small increments. 

Le77ml 5. For some 6,>Op 
al there exist functions g,, Ag,.h, and Ah, analytic in Ua, and satisfying (4.61, such 

that everywhere in l& 

b) There exist mappings qo, An, analytic in CT&, and satisfying (3.71, such that every- 
where in Ca, 

\I 'lo (9) Iid.+dJ+da f @-‘I i\ 4 Ild,+dJ < Ce (4.9~ 

Proof. We will confine ourselves to proving the more difficult assertion (b). To that 
end we define Mr.* 5= (cp.*fiT.-)&f/2. 1 3 3 Then ~JW~*=&ilijW~*. Expand the mappings qe,q and 69 

in terms of the basis elements Wjf:n(q)= ~q,*(q)W’,* etc. Functions of s will denote 

Fourier transforms with respect to q: 

and so on. It folLows from Lemma 4 and known estimates for the decrease of the Fourier 
coefficients of analytic functions (/14/,Sect.4.2) that II?(P)~~~*~~~CCBX~(--~~I~I). Hence there 
exists a number C, =i C,(S,--ki6,) such that if 

then An satisfies estimate (4.9). Then the quantities 32(a) vanish for lsl> Ma, while 
for lll<M* 

q$ (s) = - Wkf (SY(W'~S3 "x) (4.U) 

Since 

IW~.Srhh./>,/O".SFhkl-e/o~.s!, oj~=61j?bjJ 

it follows from condition 2 of the theorem that 

\ t0I.S T i, 1% ‘19 (1 + [ S \)-M + ‘/a? 1% ,- c, h E’+)-lw - cl8 h E-I 

Therefore, if c is sufficiently small, the absolute value of the denominator in (4.11) 
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is at least Vnp (1 f 1 s [P and 

/I 90 (‘I) :.d,+Q t- 1; &I (u)mJQ jld,tdJ g C,F’* g Es u,*, b < & 

(see /14/j. Consequently, it follows from the estimate for An and the form of Eq.(4.71 that 

11 A-%@ fn) l!d_*Q 4 c3P-1 for p E Lk*. The estimate for no($ now follows from condition B. 

As bfore, let s be the displacement operator along trajectories of (4.4) and let 

s (2) = z + 821. Then if z(t) is the trajectory Of (4.4) with initial condition z, we have 

Thus Lemma 5 implies the following 

Lemma 6. There exists S,> 0 such that the mappings: o,,&--+o,.a, is analytic for 

s E I-Q, $1, s1 =-L c&, + d, -j- d,, s2 = d, + do -+- do. Moreover, 

(we recall that 8 is assumed to be sufficiently Small and the tangent space to @,,a is 

identified with 2,). 

Let z E &,8,? S (2) = 2 + 89. Then 

Denote the functional in square brackets f-1, (together with its coefficient) by A$$. 

Lemmas 5 and 6 imply the following. 

Lemma 7. If .zEO&,4, where 6, < a,, then for i = 1, . ..* ? 

I bN I + iI V&jH #d.+dJ <Cc’@ 

Thus, 

H (‘9 (z)) = co* . 5 -I- 1,; (4. Y> -1- @ff, (4 + EH, (4 

where the functionals H,(z) and w, (s) are analytic in 0d76, and 

1 H, (2) ( + 11 Tyff~ (z) iid,td,y -< CP-” 

The transformed system of equations may be written as 

f4.12p 

Since the mappings JFViY, and JrW Hz are analytic (see (4.121 and Lemma 41, this 
system is obtained by perturbing the system q’= ox, $,‘- 0,. y’ = J.4, by a vector field 
satisfying a Lipschitz condition. Since the unperturbed system defines a group of isometric 
transformations of the domain Q&,8,? 60 < 65, the solution of system (4.13)-(4.15) is unique 
and exists at least up to the time at which the boundary of the domain Qd<, 8, is reached 
(see, e.g., /15/, p.105). Let fs (th g W Y ft)f = 2’ ft) be the solution of the system such 
that S (z' (0)) = z0 = (qO, &,, y& By (4.141, Lemma 4, estimate (4.12) and the Cauchy in- 
equality, we have 

d 1 % (t) i/dt < 8 c @I-" i- i fi 1' -i- ii r/i!d,2) (4.16) 

Let P be the linear operator carrying Ipf into $c~,~*,j = 1, 2, . . . . Then 

11 &+'tjo' = <pay, &‘> = it y ikd,a, <J;Affs &b’ = o (4.15) 



Multiplying Eq.t4.15) by P'Y (t) in Y (scalar product) and using (4.17), we obtain 

‘Jod <Y? Pa y)llt = sB <J'Ffil, P%> -f- e UC,&, PW 

By (4.12) and Lemma 4, the right-hand side of this equality does not exceed! Csi1 Y&I, 
(ep”* -6 t E 1 -!- 11 ~!\a,). Hence 

(4.18) 

Hence, by Gronwall's Lemma, 

1 g tt) + It Y (t) Iti, < (W-’ -i- 1 E (0) i -k it Y (0) /id*) ec@ - sp-* (4.19) 

By condition (2.5) and Lemma 6, 1 E (0) 1 + 11 Y (0)1/d, < Csp%u. Therefore, if 0< 2b< a\< 1, 
then for 0 < t Q L (e) = b In E-~/(EC~) we have 

1 E (t) \ + 8 Y ftf ita, <c, @f&‘-? rb (4.20) 

Consequently, if E is sufficiently small, the solution z'(t) exists at least for O< t< 
fi (a). If 2, (6) = (q, -!- w't, 0, 0)s it follows from (4.201 and (4.13) that 

li z'(t) - %f~)ll&<Ga"-6P-a 

Therefore, by the estimates in Lemma 6, 

\I s (z' (t)) - % (t) \ld, < 11 s (2’ @)) - s (% @)) Iid. -k- \I s (% (t)) - % (t)\ld, < 
2 // 2%’ (tf - z* (t) {Id, 3_ C,ep’ cg C,Ea-bp-” 

But .S (z' (t)) = z (t) is the solution of system (1.3) with initial condition so. 
Estimate (2.6) is proved if one puts x = 2b (and if s is sufficiently small). 
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