# AN AVERAGING THEOREM FOR DISTRIBUTED CONSERVATIVE SYSTEMS AND ITS APPLICATION TO VON KARMAN'S EQUATIONS* 

S.B. KUKSIN

An averaging theorem, of the Krylov-Bogolyubov-Mitropols'kii type, is proved for oscillatory processes in spatially-multidimensional conservative systems. Von Kármán's equations are considered as an example.

1. Statement of the problem. Oscillatory processes in distributed conservative systems can be described by means of Hamiltonian equations in an infinite-dimensional phase space $Z$ equipped with a symplectic structure /1-3/. As in the finite-dimensional case /4/, writing the equations in Hamiltonian form is equivalent to expressing them as variational principles (the latter approach is much more popular for the equations of mechanics of continuous media; see, e.g., /5/).

Equipping $Z$ with a symplectic structure is equivalent to defining a Poisson bracket $\left\lfloor H_{1}, H_{2}\right\rceil$ for functionals $H_{1}, H_{2}^{\prime}: Z \rightarrow \mathbf{R} \quad$ (see $/ 2-4 /$ ). In the simplest case, $Z$ is a Hilbert space with scalar product $\langle\cdot, \cdot\rangle$ and the Poisson bracket is

$$
\begin{equation*}
\left[H_{1}, H_{2}\right](u)=\left\langle\nabla H_{1}(u), J \nabla H_{2}(u)\right\rangle, u \in Z \tag{1.1}
\end{equation*}
$$

Here $J$ is an antiselfadjoint operator in $Z$ (possibly non-bounded) and $\nabla$ is the gradient relative to the scalar product in 2 , i.e.,

$$
H_{1}(u+\varepsilon v)=H_{1}(u)+\varepsilon\left\langle\nabla H_{1}(u), v\right\rangle+o(\varepsilon)
$$

With this symplectic structure, a functional $H$ on $Z$ is associated with the following Hamiltonian equation:

$$
\begin{equation*}
u^{*}=J \nabla H(u), u=u(t) \in \mathbb{Z} \tag{1.2}
\end{equation*}
$$

In most cases $Z=L_{2}\left(\Omega ; \mathbf{R}^{N}\right)$, where $\Omega$ is an $n$-dimensional region $(n \geqslant 1)$, and $H$ is a functional of variational calculus $/ 1,2,5 /$. Then $\nabla H(u)=\delta H / \delta u(x)$ is the variational derivative of $H$. A more complicated example of an infinite-dimensional symplectic space is presented below (Sect.3), in connection with von Kármán's equations.

We will consider the problem of small oscillations in system (1.2). To that end we focus our attention on the quadratic term in $H$ and substitute $u=\varepsilon z$. This gives an equation for $z(t)$ with Hamiltonian $H_{0}(z)=\langle A z, s\rangle / 2+\varepsilon H_{\Delta}(z, \varepsilon)$, where $A$ is a selfadjoint operator:

$$
\begin{equation*}
z^{*}=J\left(A z+\varepsilon \nabla H_{\Delta}(z, \varepsilon)\right) \tag{1.3}
\end{equation*}
$$

We shall assume that the spectrum of the operator $J A$ is pure imaginary.
An averaged $m$-th approximation solution ( $m \geqslant 0$ ) of Eq. (1.3) is defined as a curve $z_{*}(t)$ which for $0 \leqslant t \leqslant L(\varepsilon)$, where $\varepsilon L(\varepsilon) \rightarrow \infty$ as: $\varepsilon \rightarrow 0$, differs from the exact solution $z(t)$ by $0\left(\varepsilon^{m}\right) / 6 /$.

The averaging problem for equations of type (1.3) describing oscillations of spatially one-dimensional systems has been intensively researched (see, e.g., /7, 8/ and the bibliography therein); Maslov and his students have averaged the solutions of equations of type (1.2) with rapidly oscillating initial conditions /9, 10/.

Our purpose in this paper is to average Eqs.(1.3) without assuming that the system is spatially one-dimensional. More precisely, we wish to construct averaged trajectories of (1.3) corresponding to non-resonant conditionally periodic solutions of the unperturbed linear equation

$$
\begin{equation*}
z^{\cdot}=J A z \tag{1.4}
\end{equation*}
$$

(i.e., solutions of Eq. (1.4) under which a finite number of modes are excited). Solutions of Eq. (1.3) that are close to conditionally periodic solutions of (1.4) must also be found when one is studying oscillations in non-autonomous Hamiltonian systems of the form

$$
\begin{gather*}
z^{*}:=J A z+\varepsilon J \nabla H_{\Delta}\left(z, \omega_{1} t, \ldots, \omega_{n} t\right)  \tag{1.5}\\
\omega_{j} \in \mathbf{K}, j=1, \ldots n
\end{gather*}
$$

where the Hamiltonian $H_{\Delta}\left(z_{1}, \zeta_{1}, \ldots, \zeta_{n}\right)$ is $2 \pi$-periodic in $\xi_{1} \ldots, \xi_{n}$.
In fact, we define auxiliary cyclic variables $q_{1}, \ldots, q_{n}, \quad q=\left(q_{1}, \ldots, q_{n}\right) \in T^{n}=\mathbf{R}^{n}\left(2_{n} Z^{2}\right)$, and variables $\left(I_{1}, \ldots, I_{n}\right)=I \in \mathbf{R}^{n}$. System (1.5) is equivalent to the autonomous Hamiltonian

[^0]system with Hamiltonian $I \cdot \omega+\langle A z, z\rangle / 2+e H_{\Delta}(z, q)$ in the extended phase space $T^{n} \times \mathbf{R}^{n} \times \mathbf{z}$ :
\[

$$
\begin{equation*}
q_{j}=\omega_{j}, I_{j}=-\varepsilon \frac{\partial}{\partial q_{j}} H_{\Delta}(z, q), z^{\prime}=J\left(A z+\varepsilon \nabla_{z} H(z, q)\right) \tag{1.6}
\end{equation*}
$$

\]

System (1.6) in turn is equivalent to a certain autonomous system of type (1.3) in the space $\mathbf{R}^{21} \times z$, considered in the neighbourhood of a conditionally periodic solution of the linear system (see Eq.(4.1) below).

Let us assume that $Z$ is spanned by an orthonormal basis $\left\{\varphi_{j} \pm \mid j=1,2, \ldots\right\}$ with the following properties:
A) $J \varphi_{j}^{ \pm}=\mp \lambda_{j J} \varphi_{j}^{\mp}, \quad A \varphi_{j}^{ \pm}=\lambda_{j A} \varphi_{j}{ }^{\mp}, \quad \forall j \geqslant 1$,
B) $\quad \lambda_{j A}=K_{A} j^{d_{A}}+o\left(j^{d_{A}}\right), \quad \lambda_{j J}=K_{J} j^{d_{J}}+o\left(j^{d_{J}}\right), \quad d_{A}, d_{J} \geqslant 0$.

In particular, the operator $J A$ has a pure imaginary spectrum $\left\{ \pm i \lambda_{j} \mid j \geqslant 1\right\}$, where $\lambda_{l}=\lambda_{i-1} \lambda_{l J}=K_{j} d^{d_{1}}+o\left(j^{d_{1}}\right), d_{1}=d_{A}+d_{J}$. Hence all solutions of Eq.(1.4) are almost periodic functions of time, and the solutions corresponding to excitation of only a finite number of modes are conditionally periodic.

For example, solutions in which the first $n$ modes are excited are

$$
\begin{gather*}
z(t)=\sum_{k=1}^{n} \sqrt{2 T_{k}}\left(\cos \left(\lambda_{k} t+v_{k}\right) \varphi_{k}^{+}+\sin \left(\lambda_{k} t+v_{k}\right) \varphi_{k}-\right)  \tag{1.7}\\
v_{k} \in[0,2 \pi), \quad \lambda_{k}=\lambda_{k A} \lambda_{k J}, \quad I_{k}>0, \quad k=1, \ldots, n
\end{gather*}
$$

The trajectory (1.7) lies on an $n$-dimensional torus

$$
T^{n}(I)=\left\{y_{1}^{+} \varphi_{1}^{+}+y_{1}^{-} \varphi_{1}^{-}+\cdots+y_{n}^{-} \varphi_{n}^{-} \mid y_{j}^{+\pi}+y_{j}^{-t}=2 I_{j}, \nabla_{j}\right\} \subset Z
$$

It turns out (see sect.2, Theorem 1) that under certain conditions implying lack of resonance, if the initial condition $u_{0}$ of Eq.(1.3) is distant from $T^{n}(I)$ by a quantity of the order of $\varepsilon^{a}, 0<a \leqslant 1$, then the averaged trajectory of order $m, 0 \leqslant m<a$, is a curve of type (1.7). The frequency vector ( $\lambda_{1}, \ldots, \lambda_{n}$ ) characterizing the curve is replaced by a similar vector $\omega^{1} \rightleftharpoons \mathbf{R}^{n}$, which is determined by averaging over $T^{n}(I)$ certain quantities derived from the perturbation $\varepsilon H_{\Delta}$.

In Sect.3, as an illustration of system (1.3), we shall consider von Kármán's equations for the small oscillations of a thin plate (/11/, Chap.1, Sect.4; /12/):

$$
\begin{gather*}
u_{1}{ }^{\prime \prime}+a_{1} \Delta^{2} u_{1}-\sqrt{\varepsilon}\left[u_{1}, u_{2}\right]^{\prime}=0, a_{2} \Delta^{2} u_{2}+\sqrt{\varepsilon}\left[u_{1}, u_{1}\right]^{\prime}=0  \tag{1.8}\\
a_{1}, a_{2}>0, u_{1}=u_{1}(t, x), u_{2}=u_{2}(t, x), x=\left(x, x_{2}\right) \\
{[u, v]^{\prime}=D_{1}^{2} u D_{2}^{2} v+D_{2}^{2} u D_{1}^{2} v-2 D_{1} D_{2} u D_{1} D_{2} v, D_{i}=\partial / \partial x_{i}}
\end{gather*}
$$

Here $\Delta^{2}=\Delta \Delta \quad$ is the iterated Laplacian (with respect to the variables $x$ ).
System (1.8) is reducible to the form (1.3), and it will follow from Theorem 1 that if the initial conditions $u_{i}(0), u_{1}^{\prime}(0)$ can be approximated to within $\varepsilon^{a}, 0<a \leqslant 1$, by sums of $n$ eigenfunctions of the operator $\Delta^{2}$, then there exists one and only one solution for $0 \leqslant t \leqslant$ $L(\varepsilon)$, where $L(\varepsilon) \geqslant \varepsilon^{-1}$. The effect of the non-linear increment to the solution "in the large" is to modify the natural frequencies of the linear system by quantities of the order of $\varepsilon$, while the eigenfunctions themselves remain unchanged, provided that the initial set of frequencies is non-resonant.
2. Statement of the theorem. In the sequel $C, C_{1}, C_{2}, \ldots$ will denote various positive constants independent of $\varepsilon$, and $U_{a}(B)$ will denote the open sphere of radius $a>0$ centred at the zero of a Hilbert space $B$.

Let $Y$ be the closed linear span in 2 of the vectors $\left\{\varphi_{k} \pm \mid k \geqslant n+1\right\}$. For $z=$
$\sum z_{k^{ \pm}} \varphi_{k}{ }^{ \pm} \in Z \quad$ we define

$$
\begin{gather*}
\|z\|_{s}^{2}=\sum_{j=1}^{n}\left|z_{j}^{ \pm}\right|^{2} j^{s}, \quad s \in \mathbf{R}  \tag{2.1}\\
y(z)=y_{1}^{+} \varphi_{n+1}^{+}+y_{1}^{-} \varphi_{n+1}^{-}+y_{2}^{+} \varphi_{n+2}^{+}+\cdots, \quad y_{k} \pm=z_{n+k}^{ \pm}
\end{gather*}
$$

and define polar coordinates ${ }^{-} \xi_{l}, q_{l}$ in the planes $\left(z_{l}{ }^{+}, z_{l}{ }^{-}\right), l=1, \ldots, n$ :

$$
\xi_{l}=\left(z_{l}^{+2}+z_{l}^{-2}\right) / 2-I_{l}, \quad q_{l}=\operatorname{Arg}\left(z_{l}^{+}+i z_{l}^{-}\right), \quad l=1, \ldots, n
$$

In the neighbourhood of the torus $T^{n}(I)$ in 2 we define coordinates $(q, \xi, y)$, where

$$
q \in T^{n}=\mathbf{R}^{n} /\left(2 \pi \mathbf{Z}^{n}\right), \quad \xi \in O_{0}\left(\mathbf{R}^{n}\right), \quad y \in O_{0}(Y), \quad \delta>0
$$

Eq. (1.7) has a very simple structure in terms of the coordinates $(q, \xi, y): \quad q_{k}=\gamma_{k}+$
$t \lambda_{k}, \xi=$ const, $y=0$. Let $Z_{s}$ be the space of elements $z=\sum z_{k} \pm \varphi_{k} \pm$ with finite norm $\|z\|_{s}$ (see (2.1)), and $Y_{s}=Y \cap Z_{s}$ (in particular, $Z_{0}=Z, Y_{0}=Y$ ). By condition B, the operators $J$ and $A$ define continuous mappings $J: Z_{t+d_{J}} \rightarrow Z_{t}, A: \mathcal{Z}_{t+d_{A}} \rightarrow Z_{t}$ for any $t \in \mathbf{R}$.

Definition. Let $M \geqslant 1$. A vector $\eta \in \mathbf{R}^{n}$ is said to be $M$-non-resonant if there exists $\rho>0$ such that

$$
\begin{gather*}
|\eta \cdot s| \geqslant \rho|s|^{-n}, \quad \forall s \in \mathbf{Z}^{n}, \quad s \neq 0  \tag{2.2}\\
\left|\eta \cdot s \pm \lambda_{n}\right| \geqslant \rho(1+|s|)^{-M}, \quad \forall k \geqslant n+1, \quad \forall s \in \mathbb{Z}^{n} \tag{2.3}
\end{gather*}
$$

Otherwise $\eta$ is called an $M$-resonant vector.
Proposition 1. If : $d_{1}>0, \lambda_{k} \neq 0$ for all $k>n+1$ and $M>n+d_{1}^{-1}-1$, then the set of all $M$-resonant vectors has measure zero.

Proof. It will suffice to prove that for $\rho<\min \left(1, \inf \left\{\mid \lambda_{k} \|\right)\right.$ and any $L>0$ the set of points $\eta \in O_{L}\left(\mathbb{R}^{n}\right)$ not satisfying condition (2.2) or (2.3) has measure at most $c \rho, C=C(L)$.

The set of points $\eta \in O_{L}\left(\mathbf{R}^{\eta}\right)$ violating condition (2.3) is the union of the layers

$$
\Pi_{t, s}^{ \pm}=\left\{\omega \in o_{r}\left(\mathbf{R}^{n}\right)| | \omega \cdot s \pm \lambda_{k} \mid<\rho(1+|s|)^{-M}\right\}, s \neq 0
$$

If $|s|<\sigma_{k}$, where $\sigma_{k}=\max \left(1,\left(\lambda_{k}-1\right) / L\right)$, then $\Pi_{k, s}^{ \pm}=\varnothing$. But if $|s| \geqslant \sigma_{k}$, then the measure of the layer is at most $C_{2} \rho|s|^{M-1}$. Therefore

$$
\left.\mathfrak{m e s} \bigcup_{\varepsilon} \|_{k, s}^{ \pm} \leqslant C_{1}\right\rangle \sum_{\mid \leqslant \geqslant \pi_{k}}|s|^{-M-1} \leqslant C_{2} \sigma_{k}^{-M+n-1}
$$

and by condition $B$ the measure of the union of all non-empty layers is at most

$$
C_{3} 3\left(1+\sum_{k \geqslant n+1} k^{-d_{1}(M-n+1)}\right) \leqslant C_{4} 0
$$

A similar estimate holds for the measure of the set of points $\eta \in o_{L}\left(\mathbb{R}^{n}\right) \quad$ violating condition (2.2).

Let $Z_{d}{ }^{c}$ be a complexification of the space $Z_{d}(d \in \mathbf{R})$.
Theorem 1. Let conditions A and B be satisfied; assume that $d_{1}=d_{A}+d_{J}>0, \lambda_{k} \neq 0$ for $k \geqslant n+1$ and

1) there exists $d_{0}>0$ such that $H_{\Delta}(\cdot, \varepsilon)$ and $\nabla H_{A}(\cdot, \varepsilon)$ can be continued as analytic mappings

$$
\begin{equation*}
H_{\Delta}(\cdot, \varepsilon): Z_{d_{0}}^{C} \rightarrow \mathrm{C}, \quad \nabla H_{\Delta}(\cdot, \varepsilon): Z_{d_{0}} C^{C} \rightarrow Z_{d_{0}+d_{J}}^{C} \tag{2.4}
\end{equation*}
$$

bounded on bounded sets uniformly in $\varepsilon \in(0,1)$;
2) the vector $\omega^{0}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is $M$-resonant for some $M \geqslant 1$.

Let $\rho>0$ be the number corresponding to $\omega^{\circ}$ figuring in the definition of $M$-nonresonance. Then constants $K_{1}^{\circ}$ and $K_{2}$ exists, independent of $\rho$ and $\varepsilon$, such that if $z(0)=$ $z_{0}=\left(q_{0}, \xi_{0}, y_{0}\right)$ in (1.3) and for some $a_{9}, 0<a \leqslant 1$,

$$
\begin{equation*}
\left|\xi_{0}\right|+\left\|y_{0}\right\|_{x_{0}} \leqslant \varepsilon^{u} \rho^{-2} \tag{2.5}
\end{equation*}
$$

then for sufficiently small $\varepsilon>0$ the solution of Eq. (1.3) is such that $z(t)$ and $z^{*}(t)$ are bounded in $Z_{d_{k}}$ and $Z_{d_{0}-d_{J}}$, respectively; it exists and is unique for $0 \leqslant t \leqslant L(\varepsilon)=$ $\varepsilon^{-1} \ln \varepsilon^{-1} / K_{1}, \quad K_{1} \geqslant K_{1}{ }^{n}$. The solution moreover satisfies the estimate

$$
\begin{equation*}
\left\|z(t)-\left(q_{0}+t \omega^{1}, 0,0\right)\right\|_{d_{\mathrm{a}}} \leqslant K_{2} \varepsilon^{a-x} \rho^{-2}, 0 \leqslant t \leqslant L(\varepsilon) \tag{2.6}
\end{equation*}
$$

where $\omega^{\mathbf{1}} \in \mathbf{R}^{n}$ is the vector with components

$$
\begin{equation*}
\omega_{i}{ }^{2}=\lambda_{i}+\varepsilon \lambda_{j J} \int_{T^{n}} \frac{\partial}{\partial \xi_{j}} H_{\Delta}(q, 0,0 ; \varepsilon) d q=\int_{T^{n 2}}\left[q_{j}, H_{v}(\cdot ; \varepsilon)\right](q, 0,0) d q_{q} \tag{2.7}
\end{equation*}
$$

and $x=x\left(K_{1}\right)>0, x \rightarrow 0$ as $K_{1} \rightarrow \infty$.
Remarks. $1^{\circ}$. If $M>n+d_{1}{ }^{-1}-1$, then it follows from proposition 1 that the set of vectors $\omega^{\circ}$ not satisfying condition 2 has measure zero.
$2^{\circ}$. The second half of condition 1 is understood in the sense that estimate (4.2) (see below, Sect.4) is valid uniformly in $\varepsilon \in(0,1]$.
$3^{\circ}$. Higher-order averages have been constructed only for a few spatially one-dimensional
systems of type (1.3) /7, 8/. For such systems $\lambda_{1}=K_{0} j^{d_{1}}+o\left(j^{d_{1}-1}\right), d_{1} \geqslant 1$. We showed /13/ that in that case the "non-resonant" conditionally periodic solutions of system (1.4) correspond to nearly conditionally periodic solutions of system (1.3).
3. Applications to von Kármán's equations. For simplicity, we will confine our attention of solutions of system (1.8) which are periodic functions of $x$ :

$$
\begin{gather*}
u_{j}\left(t, x_{1}+2 \pi, x_{2}\right) \equiv u_{j}\left(t, x_{1}, x_{2}+2 \pi\right) \equiv u_{j}(t, x), j=1,2  \tag{3.1}\\
\int_{0}^{2 \pi} \int_{0}^{2 \pi} u_{j}\left(t, x_{1}, x_{2}\right) d x_{1} d x_{2} \equiv 0, \quad j=1,2 \tag{3.2}
\end{gather*}
$$

By (3.1), the functions $u_{1}(t, \cdot), u_{2}(t, \cdot)$ may be considered defined on a two-dimensional torus $T_{x}{ }^{2}=\mathbf{R}_{x}^{2} / 2 \pi \mathrm{Z}^{2}$. Let $G_{2}$ denote "Green's operator", i.e., the operator inverse to $\Delta^{2}$ on $T_{x}{ }^{2}$ under conditions (3.2). It then follows from (1.8) that

$$
\begin{equation*}
u_{1} \ddot{+}+a_{1} \Delta^{2} u_{1}+\varepsilon a_{2}^{-1}\left[u_{1}, G_{2}\left(\left[u_{1}, u_{1}\right]^{\prime}\right)\right]^{\prime}=0 \tag{3.3}
\end{equation*}
$$

Let $L_{0}{ }^{2}$ denote the space of functions in $L^{2}\left(T_{x}{ }^{2}\right)$ with zero average. The operator $\Delta^{2}$ defines a selfadjoint positive operator $N_{2}$ in $L_{0}{ }^{2}$ with domain $H_{0}{ }^{4}\left(T_{x}{ }^{2}\right)$ and a linear isomorphism $N_{2}: H_{0}{ }^{2}\left(T_{x}{ }^{2}\right) \rightarrow H_{0}{ }^{-2}\left(T_{x}{ }^{2}\right)$ (where $H_{0}{ }^{j}\left(T_{x}{ }^{2}\right)$ is the subspace of $H^{j}\left(T_{x}{ }^{2}\right)$ consisting of the functions with zero average; $H^{j}$ are the Sobolev spaces). Put $N_{1}=\sqrt{N_{2}}, G_{1}=N_{1}^{-1}$; then $G_{2}=G_{1}{ }^{2}$.

Put. $Z^{\circ}=H_{0}{ }^{2}\left(T_{x}{ }^{2}\right),\|u\|^{2}=\iint\left(N_{1} u\right)^{2} d x ; Z=Z^{\circ} \times Z^{\circ},\|(u, v)\|_{0}{ }^{2}=\|u\|^{2}+\|v\|^{2}$. We define in $Z$ an antiselfadjoint operator $J$ and a functional $H_{\Delta}$ :

$$
\begin{gather*}
J(u, v)=\left(N_{1} v,-N_{1} u\right)  \tag{3.4}\\
H_{\Delta}(u, v)=\iint\left(G_{1}\left([u, u]^{\prime}\right)\right)^{2} d x \tag{3.5}
\end{gather*}
$$

Lerma 1. The functional $H_{\Delta}$ is analytic in $Z$ and

$$
\begin{equation*}
\nabla H_{\Delta}(u, v)=4\left(G_{2}\left[u, G_{2}[u, u]^{\prime}\right]^{\prime}, 0\right) \tag{3.6}
\end{equation*}
$$

Proof. Given $u \in Z^{\circ}$, let $H_{\Delta 0}(u)$ equal the right-hand side of (3.5). To prove the lemma it will suffice to show that $H_{\Delta 0}$ is analytic on $Z^{\circ}$ and to determine its gradient. Analyticity follows from the estimate $H_{\Delta 0}(u) \mid \leqslant C\|u\|^{4}$ (see /12, 13/). For $u, v \in Z^{0}$ we have

$$
d H_{\Delta 0}(u) v=4 \iint C_{1}\left([u, u]^{\prime}\right) G_{1}\left([u, v]^{\prime}\right) d x=4 \iint C_{2}\left([u, u]^{\prime}\right)[u, v]^{\prime} d x
$$

We know /12, 13/ that the trilinear form

$$
(u, v, w) \mapsto \iint[u, v]^{\prime}(x) w(x) d x
$$

is symmetric. Therefore,

$$
d H_{\Delta 0}(u) v=\iint v(x)[u, W]^{\prime}(x) d x=\left\langle v, G_{2}[u, W]^{\prime}\right\rangle
$$

where $W=4 G_{2}[u, u]^{\prime} . \quad$ Thus $\nabla H_{\Delta 0}(u)=G_{2}[u, W]^{\prime}$, implying (3.6).
Consider the Hamiltonian

$$
\begin{equation*}
H_{0}(z)=1 / 2\|z\|_{0}^{2} \sqrt{a_{1}}+1 / 4 \varepsilon\left(a_{2} \sqrt{a_{1}}\right)^{-1} H_{\Delta}(z), z=(u, v) \tag{3.7}
\end{equation*}
$$

It has the form of the Hamiltonian of system (1.3) if $A$ is taken to be the operator $\sqrt{a_{1}} I(I \quad$ is the identity operator in $Z) . \quad$ By Lemma 1 ,

$$
\nabla H_{0}(u, v)=\left(\sqrt{a_{1}} u+\varepsilon\left(a_{2} \sqrt{a_{1}}\right)^{-1} G_{2}\left[u, G_{2}\lfloor u, u]^{\prime}\right]^{\prime}, \sqrt{a_{1}} v\right)
$$

Thus the system corresponding to $H_{0}$ is

$$
\begin{equation*}
u^{\cdot}=\sqrt{a_{1}} A_{1} v, \dot{v}=-A_{1}\left(\sqrt{a_{1}} u+\varepsilon a_{2}^{-1} G_{2}\left[u, G_{2}[u, u]^{\prime}\right]^{\prime}\right. \tag{3.8}
\end{equation*}
$$

If $(u, v)$ is a solution of system (3.8), then $u(t, x)$ satisfies Eq. (3.3). Thus system (1.8) is equivalent to Eq. (1.3) with Hamiltonian (3.7), provided that the operator figuring in the definition of the Poisson bracket (1.1) is (3.4). Let $\left\{\psi_{j} \mid j \geqslant 1\right\}$ be a complete system of eigenfunctions of the operator $N_{2}$ and $N_{2} \psi_{j}-\mu_{j}{ }^{2} \psi_{j}$. By the known asymptotic behaviour of the spectrum of an elliptic differential operator, $\mu_{j}=K_{*} j+o(j)$. Therefore, if $\varphi_{j}{ }^{+}=\left(\psi_{j}, 0\right), \varphi_{j}^{-}=\left(0, \psi_{j}\right)$, then $J \varphi_{j} \pm=\mp \mu_{j} \varphi_{j}{ }^{\mp}, j=1,2, \ldots$, and the operators $A$ and $J$ corresponding to system (3.8) satisfy conditions $A$ and $B$, with $\lambda_{f J}=\mu_{j}, \lambda_{j A}=\sqrt{a_{1}}, d_{A}=0, d_{J}=$ $d_{1}=1$.

Lemana 2. For natural numbers $s$, the norm in $Z_{s}$ is equivalent to the norm in $H_{0}^{23+2}\left(T_{x}{ }^{2}\right) \times$ $H_{0}^{2+2}\left(T_{x^{2}}{ }^{2}\right)$.

Lema 3. The mapping $\left\ulcorner H_{\Delta}: Z_{m} \rightarrow Z_{m+2}\right.$ is analytic if $m \geqslant 2$.
The proof of Lemma 2 follows from the inequalities

$$
C^{-1}\|(u, v)\|_{s}^{2} \leqslant\left\|J^{s}(u, v)\right\|\left\|^{2} \leqslant C\right\|(u, v) \|_{s}^{2}
$$

since

$$
\left\|N_{1}^{*} u\right\|^{2}=\iint\left|N_{1}^{s+1} u\right|^{2} d x=\iint\left|\Delta^{3+1_{1}}\right|^{2} d x
$$

which is equivalent to the square of the norm in $H_{0}^{20+2}\left(T_{x}^{2}\right)$.
To prove Lemma 3, we let $\mid \cdot \|_{s}$ denote the norm in $H_{0}{ }^{8}\left(T_{\left.x_{0}{ }^{2}\right)}\right.$. Then $\left|G_{2}(u)\right|_{s+4} \leqslant C \mid u \|_{s}$ for all $s$. If $s \geqslant 2$, then $\left.\left|[14, v]^{\prime} l_{s} \leqslant C_{1}\right| u\right|_{s+2}|v|_{a+2,}$ whence it follows that the mapping $\nabla H_{\Delta n}: H_{0}{ }^{m}\left(T_{x}{ }^{2}\right) \rightarrow$ $H_{0}^{x+2}\left(F_{x}^{2}\right)$ is analytic for $m \geqslant 4$. Together with Lemma 2, this implies the required assertion.

Thus, system (3.8) satisfies the assumptions of Theorem 1 for $d_{0} \geqslant 2$ and if the vector $\omega^{0}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ is non-resonant then the averaged solutions of system (3.8) are curves of type (1.7) with $\lambda_{k}=\omega_{k}{ }^{1}$. The averaged solutions of Eq. (3.3) are the curves

$$
u(t)=\sum_{k=1}^{n} \sqrt{2 I_{k}} \sin \left(\omega_{k}^{1} t+v_{k}\right) \psi_{k}(x)
$$

4. Proof of Theorem 1. To abbreviate the discussion we omit the dependence of the Hamiltonian on $\varepsilon$; all estimates in this section are uniform in $\varepsilon \in(0,1)$.

Transform system (1.3) from the variable $z$ to variables $(q, \xi, y) \in O_{s, 0}=T^{n} \times O_{0}\left(\mathbf{R}^{n}\right) \times$ $O_{\Delta}\left(Y_{s}\right)$, where

$$
\begin{gather*}
q_{j}^{0}=\lambda_{j J}\left(\lambda_{j-1}+\varepsilon \frac{\partial}{\partial \xi_{j}} H_{\Delta}(q, \xi, y)\right), \quad \xi_{j}=-\varepsilon \lambda_{j j} \frac{\partial}{\partial q_{j}} H_{\Delta}(q, \xi, y) \\
y^{\prime}=J\left(A y+\varepsilon \nabla_{y} H_{\Delta}(q, \xi, y)\right) \tag{4.1}
\end{gather*}
$$

The tangent space to $O_{s, 8}$ at an arbitrary point is identified with $Z_{s}$. Isolate the terms in $H_{\Delta}$ that are linear in $\xi$ and $y$ :

$$
H_{\Delta}=g(q)+\xi \cdot h_{1}(q)+\langle y, \eta(q)\rangle+H_{2}(q, \xi, y)
$$

Modifying $H_{\Delta}$ by a constant if necessary, we may assume that $\bar{g}=0$ (the bar denotes averaging over $q \in T^{n}$ ). Write the Hamiltonian of system (4.1) as follows:

$$
\begin{gathered}
H=\left(\lambda_{A}{ }^{n}+8 h_{1}\right) \cdot \xi+1 / 2\langle A y, g\rangle+e H_{1} \\
\lambda_{A}^{n}=\left(\lambda_{1 A}, \cdots, \lambda_{n A}\right), \quad H_{1}=H_{2}+H_{5} \\
H_{3}=g(q)+\xi \cdot h(q)+\langle y, \eta(q)\rangle, \quad h=h_{1}-h_{1}
\end{gathered}
$$

Continue the functional $H_{\Delta}$ analytically to a complex domain of the form

$$
\begin{gathered}
O_{\delta_{0}, \delta_{1}}^{C}=U_{\delta_{1}} \times O_{0_{1}}\left(\mathrm{C}^{n}\right) \times O_{\delta_{1}}\left(Y_{d_{0}} c\right), \quad \delta_{1}>0 \\
U_{\delta_{1}}=\left\{q \in \mathrm{C}^{n} / 2 \pi \mathbf{Z}^{n}| | \operatorname{Im} q \mid<\delta_{1}\right\}
\end{gathered}
$$

where $Y_{s}^{c}$ is a complexification of $Y_{s}$. By condition 1 of Theorem 1 , the following estimate is true everywhere in $O_{U_{0}, 0_{1}}^{C}$ :

$$
\begin{equation*}
\left|H_{\Delta}(q, \xi, y)\right|+\left\|\nabla_{y} H_{\Delta}(q, \xi, y)\right\|_{d_{0}+d_{J}} \leqslant C \tag{4.2}
\end{equation*}
$$

Our assertion now follows from (4.2) and the Cauchy inequality.
Lemma 4. There exist $\delta_{2}>0$ and constants $C_{1}, C_{2}, C_{3}$ such that for $q \in U_{s_{2}}$ and $(q, \xi, y) \in O_{d_{0}, \sigma_{2}}^{C}$

$$
\begin{gather*}
|g(q)|+|h(q)|+\left|h_{1}\right|+\|\eta(q)\|_{d_{0}+d_{J}} \leqslant C_{1} \\
\left|H_{2}(q, \xi, y)\right| \leqslant C_{2}\left(|\xi|^{2}+\|y\|_{a_{0}^{2}}^{2}\right)  \tag{4.3}\\
\left|\nabla_{\xi} H_{2}(q, \xi, y)\right|+\left\|\Gamma_{y} H_{2}(q, \xi, y)\right\|_{d_{0}+d_{J}} \leqslant C_{3}\left(|\xi|+\|y\|_{d_{0}}\right)
\end{gather*}
$$

Define an auxiliary Hamiltonian $\varepsilon \Xi$, where

$$
\Sigma=g_{0}(q)+\xi \cdot h_{0}(q)+\left\langle y, \eta_{0}(q)\right\rangle
$$

The corresponding canonical transformation $S$ is the displacement per unit time along the trajectories of the Hamiltonian system with Hamiltonian $\varepsilon \in$ :

$$
\begin{gather*}
q_{j}^{*}=\varepsilon F_{j}^{q}(q), \quad \xi_{j}^{j}=\varepsilon F_{j}^{t}(q, \xi, y), \quad \dot{y}=\varepsilon F^{y}(q)  \tag{4.4}\\
F_{j}^{q}=\lambda_{j J} h_{0 j}(q), \quad F^{v}=J \eta_{0}(q) \\
F_{j}^{\xi}=-\lambda_{j J}\left(\xi \cdot \frac{\partial h_{0}(q)}{\partial q_{j}}+\frac{\partial g_{0}(q)}{\partial q_{j}}+\left\langle y, \frac{\partial \eta_{0}(q)}{\partial q_{j}}\right\rangle\right) \tag{4.5}
\end{gather*}
$$

$S$ is a canonical transformation, taking system (4.1) into the system with Hamiltonian $H^{1}(q, \xi, y)=H(S(q, \xi, y)) \quad$ (see $\left./ 3,4 /\right)$. Write $S$ as follows: $q \mapsto q+\varepsilon q^{1}, \xi \mapsto \xi+\varepsilon \xi^{1}, y \mapsto y+$ $\varepsilon y^{1}$. Then $q^{1}=F^{4}+\varepsilon \ldots, \xi^{1}=F^{k}+\varepsilon \ldots, y^{1}=F^{v}+\varepsilon \ldots$. Therefore, putting $(q, \xi, y)=z,\left(q^{1}, \xi^{1}, y^{1}\right)=z^{1}$ and $\lambda_{A}{ }^{n}+\varepsilon h_{1}=\omega^{2}$, we can write the transformed Hamiltonian as

$$
\begin{gathered}
H^{1}(z)=\omega^{2} \cdot \xi+\frac{1}{2}\langle A y, y\rangle+\varepsilon\left(-\left(\sum_{j=1}^{n} \xi \cdot\left(\frac{\partial h_{0}}{\partial q_{j}} \lambda_{j J} \omega_{j}^{2}\right)+\right.\right. \\
\left.\frac{\partial g_{0}}{\partial q_{j}} \lambda_{j J} \omega_{j}^{2}+\left\langle y, \frac{\partial \eta_{0}}{\partial q_{j}} \lambda_{j j} \omega_{j}^{2}\right\rangle\right)+\left\langle A y, J \eta_{0}(q)\right\rangle+ \\
g(q)+\xi \cdot h(q)+\langle y, \eta(q)\rangle)+\varepsilon H_{2}(z)+O\left(\varepsilon^{2}\right)
\end{gathered}
$$

Let $\omega^{1} \in \mathbf{R}^{n}$ denote the vector with components $\omega_{j}{ }^{1}=\omega_{j}{ }^{2} \lambda_{j J}$. Since $h_{1 j}(q)=\partial H_{\Delta}(q, 0$, $0) / \partial \xi_{j} \quad$ and for any functional $H^{\prime}$ we have $\left[q_{j}, H^{\prime}\right]=\lambda_{j j} \partial H /^{\prime} / \partial \xi_{j}$, it follows that $\lambda_{j g} h_{1 j}(q)=\left[q_{j}\right.$, $H_{0} \mathrm{l}(q, 0,0)$. Hence the vector $\omega^{\mathrm{l}}$ is of the form (2.7).

Equating the expression in square brackets to zero, we obtain homological equations for $g_{9}, h_{0}$ and $\eta_{0}$ :

$$
\begin{gather*}
\partial g_{0}(q) / \partial \omega^{1} \equiv \omega^{1} \cdot \nabla g_{0}(q)=g(q)+\varepsilon \Delta g(q), \quad \partial h_{0}(q) / \partial \omega^{1}=h(q)+  \tag{4.6}\\
\varepsilon \Delta h(q)  \tag{4.7}\\
\partial \eta_{0}(q) / \partial \omega^{1}-A J \eta_{0}(q)=\eta(q)+\varepsilon \Delta \eta(q)
\end{gather*}
$$

where $\varepsilon \Delta g, \varepsilon \Delta h$ and $\varepsilon \Delta \eta$ are admissible small increments.
Lemma 5. For some $\delta_{3}>0$,
a) there exist functions $g_{0}, \Delta g, h_{0}$ and $\Delta h$, analytic in $U_{0}$ and satisfying (4.6), such that everywhere in $U_{\delta_{s}}$

$$
\begin{equation*}
|\Delta g(q)|+|\Delta h(q)| \leqslant C \varepsilon,\left|g_{0}(q)\right|+\left|h_{0}(q)\right| \leqslant C \rho^{-1} \tag{4.8}
\end{equation*}
$$

b) There exist mappings $\eta_{0,} \Delta \eta$, analytic in $U_{0}$, and satisfying (3.7), such that everywhere in $U_{\delta_{s}}$

$$
\begin{equation*}
\left\|\eta_{0}(q)\right\| d_{d_{2}+d_{j}+d_{3}} \leqslant C \rho^{-1}, \quad\|\Delta \eta\|_{d_{c}+d_{j}} \leqslant C \varepsilon \tag{}
\end{equation*}
$$

Proof. We will confine ourselves to proving the more difficult assertion (b). To that end we define $W_{j}^{ \pm}=\left(\varphi_{j}{ }^{+} \pm i \varphi_{j}^{-}\right) / \sqrt{2}$. Then $A J W_{j}^{ \pm}= \pm i \lambda_{j} W_{j} \pm$. Expand the mappings $\eta o n$ and $\Delta \eta$ in terms of the basis elements $W_{j} \pm: \eta(q)=\sum \eta_{k} \pm(q) W_{k} \pm \quad$ etc. Functions of $s$ will denote Fourier transforms with respect to $q$ :

$$
\eta_{k}^{ \pm}(q)=\sum_{s \equiv \mathbb{Z}^{n}} \eta_{k} \pm(s) e^{i}
$$

and so on. It follows from Lemma 4 and known estimates for the decrease of the Fourier coefficients of analytic functions (/14/, Sect.4.2) that $\|\eta(s)\|_{d_{s}+d_{J}} \leqslant C \operatorname{oxp}\left(-\delta_{2} \mid s \|\right)$. Hence there exists a number $C_{*}=C_{*}\left(\delta_{2}-\delta_{3}\right)$ such that if

$$
\begin{equation*}
\Delta \eta=\sum_{|s|>M_{*}} \eta(s) e^{i q \cdot s} * M_{*}=C_{*} \ln e^{-2} \tag{4.10}
\end{equation*}
$$

then $\Delta \eta$ satisfies estimate (4,9). Then the quantities $\eta_{0}^{\prime}(s)$ vanish for $|s|>M_{*}$ while for $|s| \leqslant M_{*}$

$$
\begin{equation*}
\eta_{0 k}^{ \pm}(s)=-i \eta_{k} \pm(s) /\left(\omega^{2} \cdot s \mp \lambda_{k}\right) \tag{4.11}
\end{equation*}
$$

Since

$$
\left|\omega^{1} \cdot s \mp \lambda_{k}\right| \geqslant\left|\omega^{n} \cdot s \mp \lambda_{k}\right|-\varepsilon\left|\omega^{3} \cdot s\right|, \quad \omega_{j}^{3}=\hbar_{1 j} \lambda_{j J}
$$

it follows from condition 2 of the theorem that

$$
\left|\omega^{1} \cdot s \mp \lambda_{\mathrm{k}}\right| \geqslant 1 / 2 p^{0}\left(1+|s|^{-M}+1 / 20\left(1+C_{*} \ln \varepsilon^{-1}\right)^{-M}-C_{1} \mathrm{l} \ln e^{-1}\right.
$$

Therefore, if $\varepsilon$ is sufficiently small, the absolute value of the denominator in (4.11)
is at least $1 / 2 \rho(1+|s|)^{-M}$ and

$$
\left\|\eta_{0}(q) E_{d_{0}+d_{J}}+\right\| \partial \eta_{0}(q) / \partial \omega^{1} \|_{d_{0}+d_{J}} \leqslant C_{20}-1, \quad q \in U_{A_{3},} \delta_{3}<\delta_{2}
$$

(see /14/). Consequently, it follows from the estimate for An and the form of Eq. (4.7) that $\left\|A J \eta_{0}(q)\right\|_{d_{0}+d y} \leqslant c_{30^{-1}}$ for $q \in U_{\delta_{2}}$ The estimate for $\eta_{0}(q)$ now follows from condition $B$.

As bfore, let $S$ be the displacement operator along trajectories of (4.4) and let
$S(\Delta)=s+\varepsilon z^{1}$. Then if $z(t)$ is the trajectory of (4.4) with initial condition $z$, we have

$$
z^{1}=\int_{0}^{1} F(z(t)) d t, \quad F=\left(F^{Q}, F^{t}, F^{v}\right)
$$

Thus Lemma 5 implies the following
Lemna 6. There exists $\delta_{4}>0$ such that the mapping $S: O_{s, \delta_{4} \rightarrow} \rightarrow O_{s,} \delta_{8}$ is analytic for $s \in\left[-s_{1}, s_{2}, s_{1}=d_{0}+d_{y}+d_{1}, s_{2}=d_{0}+d_{J}+d_{A}\right.$. Moreover,

$$
\begin{gathered}
\left|q^{1}\right| \leqslant s C \rho^{-1}, \quad\left|\xi^{1}\right| \leqslant C \rho^{-1}\left(1+\|y\|_{-1}\right), \quad\left\|y^{2}\right\|_{s z} \leqslant C \rho^{-1} \\
\left.\forall s \in \mid-s_{1}, s_{2}\right], \quad\|d S(z)\| z_{s}, z_{s} \leqslant 2, \quad\|d S(z)-I-\varepsilon d F(z)\| z_{s}, z_{z} \leqslant C \varepsilon^{2} \rho^{-2}
\end{gathered}
$$

(we recall that $\varepsilon$ is assumed to be sufficiently small and the tangent space to $O_{3} 0$ is identified with $Z_{s}$ ).

Let $z \in O_{s,} \delta_{4}, S(z)=z+\varepsilon z^{1}$. Then

$$
\begin{gathered}
H(S(z))=\omega^{2} \cdot \xi+1 / 2\langle A y, y\rangle+\varepsilon\left[\left(\xi^{1}-F^{s}\right) \cdot \omega^{2}\right]_{1}+ \\
\varepsilon\left[\left\langle A y, y^{1}-F^{\prime}\right\rangle\right]_{\mathrm{l}}+1 / \varepsilon^{2}\left[\left\langle A y^{1}, y^{1}\right\rangle\right]_{3}+\varepsilon\left[-\partial g_{0} / \partial \omega^{1}+g\right]_{4}+ \\
\varepsilon\left[\left(-\partial h_{0} / \partial \omega^{1}+h\right) \cdot \xi_{5}+\varepsilon\left[\left\langle\partial \eta_{0} / \partial \omega^{2}-A\right\rangle \eta_{0}-\eta_{1} y\right\rangle\right]_{6}+ \\
\varepsilon\left[H_{1}\left(z+\varepsilon z^{1}\right)-H_{1}(z)\right]_{7}+\varepsilon H_{2}(z)
\end{gathered}
$$

Denote the functional in square brackets $[\cdot]_{\text {, }}$ (together with its coefficient) by $\Delta_{j} H$. Lemmas 5 and 6 imply the following.

Lemma 7. If $z \in O_{d_{0}, a_{s}}$, where $\delta_{5}<\delta_{4}$, then for $j=1, \ldots 7$

$$
\left|\Delta_{j} H\right|+\left\|\nabla_{y} \Delta_{j} H\right\|_{d_{0}+d_{j}} \leqslant C \varepsilon^{2} p^{-2}
$$

Thus,

$$
H(S(z))=\omega^{2} \cdot \xi+1_{2}\langle A y, y\rangle+\varepsilon^{2} H_{4}(z)+\varepsilon H_{2}(z)
$$

where the functionals $H_{2}(x)$ and $H_{4}(z)$ are analytic in $O_{d, 0}$ and

$$
\begin{equation*}
\left|H_{4}(z)\right|+\| \Gamma_{y} H_{4}(z) / h_{3}+d_{y} \leqslant C \rho^{-2} \tag{4.12}
\end{equation*}
$$

The transformed system of equations may be written as

$$
\begin{gather*}
q_{j}=\omega_{j}^{1}+\varepsilon \lambda_{j J}\left(\partial / \partial \xi_{j}\right)\left(\varepsilon H_{4}+H_{2}\right)  \tag{4,13}\\
\xi_{j}=-\varepsilon \lambda_{j J}\left(\partial / \partial q_{j}\right)\left(e H_{4}+H_{2}\right)  \tag{4.14}\\
y^{+}=J\left(A y+\varepsilon^{2} \nabla_{y} H_{4}+\varepsilon \nabla_{\psi} H_{2}\right) \tag{4.15}
\end{gather*}
$$

Since the mappings $J F_{1} H_{4}$ and $J \Gamma_{1} H_{2}$ are analytic (see (4.12) and Lenma 4), this system is obtained by perturbing the system $\dot{q}=\omega^{1}, \xi^{*}=0$, $y^{*}=J A_{y}$, by a vector field satisfying a Lipschitz condition. Since the unperturbed system defines a group of isometric transformations of the domain $O_{d_{0}, \delta_{4}}, \delta_{6}<\delta_{5}$, the solution of system (4.13)-(4.15) is unique and exists at least up to the time at which the boundary of the domain $O_{d_{s},} o_{s}$ is reached (see, e.g., /15/, p.105). Let $(q(t), \xi(t), y(t))=z^{\prime}(t)$ be the solution of the system such that $S\left(z^{\prime}(0)\right)=z_{0}=\left(q_{0}, \xi_{0}, y_{0}\right) . \quad$ By (4.14), Lemma 4, estimate (4.12) and the Cauchy inequality, we have

$$
\begin{equation*}
d|\xi(t)| / d t \leqslant e C\left(\varepsilon \rho^{-2}+|\varepsilon|^{2}+\|y\| \|_{d_{0}}^{2}\right) \tag{4.16}
\end{equation*}
$$

Let $P$ be the linear operator carrying $\varphi_{j} \pm$ into $j^{d_{s}} \varphi_{j} j=1,2$, ... Then

$$
\begin{equation*}
\|P y\|_{0}^{2}=\left\langle P^{2} y, y\right\rangle=\|y\|_{d_{0}^{2}},\left\langle J A y, P_{y\rangle}\right\rangle=0 \tag{4.17}
\end{equation*}
$$

Multiplying Eq. (4.15) by $P^{2} y(t)$ in $Y$ (scalar product) and using (4.17), we obtain

$$
1 / 2 d\left\langle y, P^{2} y\right\rangle / d t=\varepsilon^{2}\left\langle J \nabla_{\psi} H_{4}, P^{2} y\right\rangle+\varepsilon\left\langle J \nabla_{\psi} H_{2}, p^{2} y\right\rangle
$$

By (4.12) and Lemma 4, the right-hand side of this equality does not exceed, $C \varepsilon\|y\| d$, $\left(\varepsilon \rho^{-2}+|\xi|+\|y\|_{d_{0}}\right)$. Hence

$$
\begin{equation*}
d\|y\|_{d_{1}} / d t \leqslant C_{1}\left(\varepsilon^{2} \rho^{-2}+\varepsilon|\xi|+\varepsilon\|y\|_{d_{0}}\right) \tag{4.18}
\end{equation*}
$$

Assume that $\|y(t)\|_{a_{s}}+|\xi(t)| \leqslant 1$. Then by $(4.16),(4.18)$,

$$
(d / d t)\left(|\xi(t)|+\|y(t)\|_{a_{2}}\right) \leqslant C_{2} \varepsilon\left(|\xi|+\|y\|_{d_{0}}+\varepsilon p^{-2}\right)
$$

Hence, by Gronwall's Lemma,

$$
\begin{equation*}
\mid \xi(t)+\|y(i)\| d_{d_{s}} \leqslant\left(\varepsilon \rho^{-2}+|\xi(0)|+\|y(0)\| \|_{d_{0}}\right) e^{C_{2} \varepsilon t}-\varepsilon \rho^{-3} \tag{4.19}
\end{equation*}
$$

By condition (2.5) and Lemma $6,|\xi(0)|+\|y(0)\|_{d_{0}} \leqslant C_{3} p^{-2} \varepsilon^{\mathrm{a}}$. Therefore, if $0<2 b<a \leqslant 1$, then for $0 \leqslant t \leqslant L(\varepsilon)=b \ln \varepsilon^{-1} /\left(\varepsilon C_{2}\right)$ we have

$$
\begin{equation*}
|\xi(t)|+\|y(t)\|_{L_{0}} \leqslant C_{4}\left(\varepsilon^{a} \rho^{-2}\right) \varepsilon^{-b} \tag{4.20}
\end{equation*}
$$

Consequently, if $\varepsilon$ is sufficiently small, the solution $z^{\prime}(t)$ exists at least for $0 \leqslant t \leqslant$ $L$ ( $\varepsilon$ ). If $z_{*}(t)=\left(q_{0}+\omega^{1} t, 0,0\right)$, it follows from (4.20) and (4.13) that

$$
\left\|z^{\prime}(t)-z_{*}(t)\right\|_{d_{e}} \leqslant C_{5} \varepsilon^{a-k} p^{-2}
$$

Therefore, by the estimates in Lemma 6 ,

$$
\begin{gathered}
\left\|S\left(z^{\prime}(t)\right)-z_{*}(t)\right\|\left\|_{d_{0}} \leqslant\right\| S\left(z^{\prime}(t)\right)-S\left(z_{*}(t)\right)\left\|_{d_{d}}+\right\| S\left(z_{*}(t)\right)-z_{*}(t) \|_{\alpha_{0}} \leqslant \\
2\left\|z^{\prime}(t)-z_{*}(t)\right\|_{d_{0}}+C_{8} \varepsilon \rho^{-1} \leqslant C_{7} \varepsilon^{a n b} p^{-2}
\end{gathered}
$$

But $S\left(z^{\prime}(t)\right)=z(t)$ is the solution of system (1.3) with initial condition $z_{0}$. Estimate (2.6) is proved if one puts $x=2 b$ (and if $\varepsilon$ is sufficiently small).

## REFERENCES

1. ZAKHAROV V.E., Hamiltonian formalism for waves in non-linear media with dispersion. Izv. Vuz. Radiofizika, 17, 4, 1974.
2. DUBROVIN B.A., KRICHEVER I.M. and NOVIKOV S.P., Integrable systems. In: Itogi Nauki i Tekhniki. Ser. Sovr. Probl. Matematiki, 4, Fundamental Trends, VINITI, Moscow, 1985.
3. CHERNOFF P.R. and MARSDEN J.E., Properties of Infinite Dimensional Hamiltonian Systems. Springer, Berlin, 1974.
4. ARNOL'D V.I., Mathematical Methods of Classical Mechanics, Nauka, Moscow, 1974.
5. BERDICHEVSKII V.L., Variational Principles of the Mechanics of Continuous Media, Nauka, Moscow, 1983.
6. BOGOLYUBOV N.N. and MITROPOL'SKII YU.A., Asymptotic Methods in the Theory of Non-linear Oscillations, Fizmatgiz, Moscow, 1958.
7. KALYAKIN I.A., Long-wave asymptotic forms of the solution of a hyperbolic system of equations. Mat. Sbornik, 124, 1, 1984.
8. OSTROVSKII L.A., Approximate methods in the theory of non-linear waves. Izv. Vuz. Radiofizika, 17, 4, 1974.
9. DOBROKHOTOV S.YU. and MASLOV V.P., Multiphase asymptotics of non-linear partial differential equations with a small parameter. Soviet Sci. Revs., Sec. C. Math., Phys. Revs., 3, 1982.
10. KARASEV M.V. and MASLOV V.P., Asymptotic and geometric quantization. Uspekhi. Mat. Nauk. 39, 6, 1984.
11. LIONS J.-L., Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, paris, 1969.
12. CIARLET P.G. and RABIER P., Les équations de von Kármán. Springer, Berlin, 1980.
13. KUKSIN S.B., Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funkts. Anal. Prilozhen., 21, 3, 1987.
14. ARNOL'D V.I., Proof of a theorem of A.N. Kolmogorov on the conservation of conditionally periodic motions under a small change in the Hamiltonian function. Uspekhi Mat. Nauk, $18,5,1963$.
15. BREZIS H., Opérateurs maximaux monotones et sémigroupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam-London, 1973.

[^0]:    *Prikl. Matem. Mekhan., 53,2,196-205,1989

