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AN AVERAGING THEOREM FOR DISTRIBUTED CONSERVATIVE SYSTEMS
AND ITS APPLICATION TO VON KARMAN’S EQUATIONS™

S.B. KUKSIN

) An averaging theorem, of the Krylov-Bogolyubov-Mitropols'kii type,
is proved for oscillatory processes in spatially-multidimensional
conservative systenms. von Karman's equations are considered as an
example.

1. Statement of the problem. Oscillatory processes in distributed conservative
systems can be described by means of Hamiltonian equations in an infinite-dimensional phase
space Z equipped with a symplectic structure /1-3/. As in the finite-dimensional case /4/,
writing the equations in Hamiltonian form is equivalent to expressing them as variational
principles (the latter approach is much more popular for the equations of mechanics of
continuous media; see, e.g., /5/).

Equipping 7 with a symplectic structure is equivalent to definind a Poisson bracket
{H,, H,] for functionals H, H,:Z-—+>R (see /2-4/). In the simplest case, Z is a Hilbert
space with scalar product <., > and the Poisson bracket is

(Hy Hy) (u) = VH, (w), JVH, (W), uez 2 (1.1)

Here J is an antiselfadjoint operator in Z (possibly non-bounded) and V is the gradient
relative to the scalar product in Z, i.e.,

H, (u+ ev) = H, (u) + e {VH, (u}, > + o0 ()

With this symplectlc structure, a functional H on Z is associated with the following
Hamiltonian equation:

C=JYH W, u=u)s2 1.2)

1n most cases Z = L, {Q; RY), where Q is an n-dimensional region (r>>1), and # is
a functional of variational calculus /1, 2, 5/. Then VH (u) = 8H/bu (z} 1is the variational
derivative of #. A more complicated example of an infinite-dimensional symplectic space is
presented below (Sect.3), in connection with von Karmin's equations.

We will consider the problem of small oscillations in system (1.2). To that end we

focus our attention on the quadratic term in H and substitute u = &z This gives an eguation
for z{¢) with Hamiltonian H, (3) = (dz, 2)/2 + eH, (2, €), where A is a selfadjoint operator:
2 = J (dz + eVH, {2, &) 1.3)

We shall assume that the spectrum of the operator J4 is pure imaginary.

An averaged m-th approximation solution (m>0) of Eq.(1.3} is defined as a curve
7, () which for 0<t<{L(s), where &L (¢} —>o00 as: &-—0, differs from the exact solution
z()) by ol(e") /6/.

The averaging problem for equations of type (1.3) describing oscillations of spatially
one-dimensional systems has been intensively researched (see, e.g., /7, 8/ and the
bibliography therein); Maslov and his students have averaged the solutions of equations of
type {(1.2) with rapldly oscillating initial conditions /9, 10/.

Our purpose in this paper is to average Egs. (1.3} without assuming that the system is
spatially one-dimensional. More precisely, we wish to construct averaged trajectories of
(1.3} corresponding to non-resonant conditionally periodic solutions of the unperturbed
linear equation

z = JAz (1.4)
(i.e., solutions of Eq.(1.4) under which a finite number of modes are excited). Solutions
of Eq.(1.3) that are close to conditionally periodic solutions of (1.4) must also be found
when one is studying oscillations in non-autonomous Hamiltonian systems of the form

s JAz 4 eJVH, (3, 048, . . ., 0g8) (1.5)
w;eER, j=1,...n
where the Hamiltonian Ha(z. &y, ... &) is 2Zn-periodic in &o.. ., Co-
In fact, we define auxiliary cyclic variables ¢, ..., ¢ ¢ = (g, . qn) & T = R¥%(2aZ?),
and variables (f,, ... I, =I<=R" System (1.5) is equivalent to the autonomous Hamiltonian
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system with Hamiltonian /-® + <Az, 2/2+ eH, (s, 9 in the extended phase space T"XR"*xX Z:
q,’ =0, I}.' =—eg- H,(z,9, 2= J (Az + eV, H (2, 9)) (1.6)
7

System (1.6) in turn is equivalent to a certain autonomous system of type (1.3) in the
space R?" v Z, considered in the neighbourhood of a conditionally periodic solution of the
linear system (see Eq.(4.1) below).

Let us assume that Z is spanned by an orthonormal basis f{oF|j=1,2,...} with the
following properties:

B) T =TFhryoF, AgE=hapF Vj=1,

B) Ma=Ka*4 +0(%4), Ay=Ki™ +0o(iV), di,d;>0.

In particular, the operator J4 has a pure imaginary spectrum {+ikA;|j> 1)}, where
M = Aqhyg = Kjs + 0 (%), d, =dy + d;.- Hence all solutions of Eq.(l.4) are almost periodic
functions of time, and the solutions corresponding to excitation of only a finite number of
modes are conditionally periodic.

For example, solutions in which the first n modes are excited are

z(t) = kZI V2T, (cos (Mt ++ vi) @™ + sin (Mt + Vi) 1) @n
v |0, 27), Ay = Agadyg, I.>0, k=1,...,n

The trajectory (1.7) lies on an n-dimensional torus
T =Wt ot 90 + -y |9 Y =21,V CZ

It turns out (see Sect.2, Theorem 1) that under certain conditions implying lack of
resonance, if the initial condition u, of Eq.(1.3) is distant from T*(I) by a quantity of
the order of &%, 0<a<(1, then the averaged trajectory of order m,0 {m < a, is a curve
of type (1.7). The frequency vector (A, ..., A,) characterizing the curve is replaced by a
similar vector o'=R", which is determined by averaging over I™(I) certain quantities
derived from the perturbation eH,.

In Sect.3, as an illustration of system (1.3), we shall consider von Kirman's equations
for the small oscillations of a thin plate (/11/, Chap.l, Sect.4; /12/):

" 4 a0y — Ve luy, u,l’ =0, A%, + Ve luy, uy) =0 (1.8
ay 8y > 0, uy = uy (2, 7), ug = U, (¢, 7), 2 = (2, 2,)
[u, vI' = D2uD,* + D,%uD*v — 2D,DuD Dy, D, = 8/0x,

Here A? = AA is the iterated Laplacian (with respect to the variables z).

System (1.8) is reducible to the form (1.3), and it will follow from Theorem 1 that if
the initial conditions uy (0), u," (0) can be approximated to within €%, 0< a <1, by sums of
n eigenfunctions of the operator A?, then there exists one and only one solution for 0<t<<
L (e), where L (g)> e, The effect of the non-linear increment to the solution "in the
large" is to modify the natural frequencies of the linear system by quantities of the order
of e, while the eigenfunctions themselves remain unchanged, provided that the initial set of
frequencies is non-resonant.

2. Statement of the theorem. In the sequel C, C,, C, ... will denote various positive
constants independent of &, and U, (B) Wwill denote the open sphere of radius a>0
centred at the zero of a Hilbert space B.

Let Y be the closed linear span in 2 of the vectors {g.* |k>n + 1} For z=

Dntete=Z  we define

Nzl2= D |z*P#*, s=R 2.1)
f=1
y(z)= y1+(P:+1 + Y P+ y,*tvln +.o0y BE= 7-$+k

and define polar coordinates " §, g in the planes 2z )l=1,...,n:
L=t aN2—1, q=Arg(zt+iz), I=1,...,n
In the neighbourhood of the torus I™(I) 1in Z we define coordinates (g, &, y), where
geT"=R"2nZ"), t=O0sR"), y=0s(Y), 6>0

Eq.(1.7) has a very simple structure in terms of the coordinates (g, §, Y: g = v +
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thy, E = const, y = 0. Let Z, be the space of elements 3z = Dz ket with finite norm ||z,
(see (2.1)), and Y, =Y Z, (in particular, Z,=Z,Y,=7Y). By condition B, the operators
J and A define continuous mappings J:Zya, —Zy, A :Zpg, — Z, for any te R.

Pefinition. Let M >1. A vector ne& R is said to be M-non-resonant if there
exists p >0 such that
In-s|>plsl™ Vss=Z', 50 2.2)
In-sEMIZp+]s)™, Vizn+t, Vs&Z' 2.3)

Otherwise 7 is called an M-resonant vector,

Proposition 1. If d;>0,A =0 for all k>n-+1 and M>n+d™ —1, then the
set of all M-resonant vectors has measure zero.

Proof. It will suffice to prove that for p < min(f, inf{{}|) and any L>0 the set of
points ne=0,(R% not satisfying condition (2.2) or (2.3) has measure at most Cp, €= C (L)
The set of points yne 0, (R™ violating condition (2.3} is the union of the layers
IE, = {o €0, RN o-s ki [ <o+ )™, 50

If |s]< oy, where o = max (1, (A4 — 1)/L), then n;—}_s = . But if |s] > ox, then the

measure of the layer is at most (p|s|™™?, Therefore

mes | “%. , < fo) 2 is ‘«M~1 {CngEMM‘l
g lelza;,

and by condition B the measure of the union of all non-empty layers is at most

ng(i—}— E k*d’(M'"“))gCQp
Kz

A similar estimate holds for the measure of the set of points ne0,(R") violating
condition (2.2).
Let Z, be a complexification of the space Z;{(de=R).

Theorem 1. Let conditions A& and B be satisfied; assume that d, =d4 +d; >0, 4 50
for k>»>n+1 and

1} there exists d, >0  such that H,(-,&) and VH,(.,e) can be continued as
analytic mappings

Ho(-8): 248 —C, SHa( €)1 24— ZG0a, (2.4)
bounded on bounded sets uniformly in &&= (0, 1k
2} the vector ©® = (%,,...,},) 1is M-resonant for some M >1.
Let p >0 be the number corresponding to ° figuring in the definition of M-non-

resonance. Then constants K, and K, exists, independent of p and e, such that if z(0) =
25 = (os Eo» ¥o) in (1.3) and for some g, O <Za<1,

PEol Fllgolls < &p* (2.5)

then for sufficiently small & >0 the solution of Eq.(l.3) is such that z(f) and 2z (8
are bounded in Z, and Z,_4,, respectively; it exists and is unique for 0Lt L) =
¢! lneV/K,, K,> K,°. The solution moreover satisfies the estimate

Tz () — (g -+ tol, 0, 0) lly, << Kpeep™, 0T £ T L(e) (2.6
where o' R" is the vector with components
of =k; -+ ey 5 ———-—62 Halg,0,0;e)dg = S {g5 Ho (-5 8))(g. 0, Oy dg (2.9
n J i
T T

and ®x =% (K)) >0, ®x—0 as K, - o0.

Remarks, 1°, If M>n+d1—1, then it follows from Proposition 1 that the set of
vectors o° not satisfying condition 2 has measure zero.

2°. The second half of condition 1 is understood in the sense that estimate (4.2)
{see below, Sect.4) is valid uniformly in e (0, 1].

3°. Higher-order averages have been constructed only for a few spatially one-dimensional
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systems of type (1.3) /7, 8/. For such systems Ai;= Ko+ o(%?).d,>1. We showed /13/
that in that case the "non-resonant" conditionally periodic solutions of system (1.4)
correspond to nearly conditionally periodic solutions of system (1.3).

3. Applications to von Karmdn's equations. For simplicity, we will confine our atten-

tion of solutions of system (1.8) which are periodic functions of x:

uj(t, 2y 20, ) =u; (8,2, 7.+ 2n)y=u; (¢, 2), j =1, 2 3.1)
2?[2-:‘:
S ustt a0 2 day day =0, j=1,2 (3.2)
[ ]

By (3.1), the functions u,(t, :), u, (¢, -) may be considered defined on a two-dimensional

torus T .2 = R */2aZ%. Let G, denote "Green's operator", i.e., the operator inverse to A?
on 7.2 under conditions (3.2). It then follows from (1.8) that
u,” + a,A%uy + eag [uy, Gy ([ug, uy])l =0 (3.3y

Let L, denote the space of functions in [?(7T,%) with zero average. The operator A?
defines a selfadjoint positive operator N, in L, with domain H# (7,%) and a linear iso-
morphism N, : Hy? (T,%) — Hy®* (T,%) (where Hy (T2 is the subspace of H' (T,?) consisting of the
functions with zero average; H’ are the Sobolev spaces). Put N, = VN, G, = N,; then
G, = G2

Put Z° = H2 (T.), lullr = {{ (Nu)? de; Z=2"% Z° |l (u, Wl,> = [ »|® + || v|i®. We define in 2
an antiselfadjoint operator J and a functional H,:

J (u, v) = (Nyw, —Nu) (3.4)
Hy (u, v) = §§ (6, ((u, ul'))* do (3.5)
Lemma 1. The functional H, is analytic in Z and
VH, (u, v) = 4 (G, [u, Gy [u, ul’l’, 0) (3.6}
Proof. Given veZz°, let H,,(w) equal the right-hand side of (3.5). To prove the
lemma it will suffice to show that H,, is analytic on 2Z° and to determine its gradient.
Analyticity follows from the estimate Hji,(w)|<Clult (see /12, 13/). For u,ve2° we

have

4l 5y ()0 =4 § 61 ([u, ul) 61 (v, o1 dx = 4{§ G (u, u]) v, vY

We know /12, 13/ that the trilinear form
(u, v, w)»—»SS[u, o) (=) w (=) dz
is symmetric. Therefore,

dH 5, (1) v =SS v (@) u, WY (2) dz = <v, Gy [z, WY

where W = 4G, [u, u]'. Thus VH,,(w) = G;[u, W), implying (3.6).
Consider the Hamiltonian
Ho (2) =Yl 212 Vay + Yse (@ V @) Ha (2), 2 = (u, 1) (8.7

_ It has the form of the Hamiltonian of system (1.3) if A is taken to be the operator
VaJ (I is the identity operator in Z). By Lemma 1,

VHy (u, v) = (V e + & (e, a) G, [y, Gy lu, ul'l, V)
Thus the system corresponding to H, is
W= Vadw, Vo= —A, (Vau + ea, G, [u, Gy Lu, w)'Y (3.8)

If (u, v) 1is a solution of system (3.8), then wu(f, z) satisfies Eq.(3.3). Thus
system (1.8) is equivalent to Eq.(1.3) with Hamiltonian (3.7)., provided that the operator
figuring in the definition of the Poisson bracket (1.1) is (3.4). Let {4;1j>1} be a
complete system of eigenfunctions of the operator N, and N,), = p;4;. By the known asymptotic
behaviour of the spectrum of an elliptic differential operator, u; = K,j+ o(j). Therefore,

if @ = (p;, 0), 97 = (0,¢)), then Jo = T~ p;eF, j=1,2,..., and the operators 4 and J
corresponding to system (3.8) satisfy conditions A and B, withAjy = py, hia = Vap, ds =0, dy =
d, = 1.

Lemma 2.  For natural numbers S, the norm in Z, is equivalent to the norm inHX*(T.%) X

H (T.2).
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Lemma 3. The mapping VHa: Z, — Z,,, 1s analytic if m > 2.
The proof of Lemma 2 follows from the inequalities
1 (w, A I (0, )2 <€ G 2) 2
since

[V ulp = SS I NP pdz = \\S} Ay g

which is equivalent to the square of the norm in AM2(1.2).

To prove Lemma 3, we let |-} denote the norm in H2 (7). Then {6 (m|w<Cluf for all
g. If s>»2, then [[u, v} ls<<C;|ulsue|vine whence it follows that the mapping VH,. Ho™ (Tx%) -
11”+? (£,% 1is.analytic for m>4. Together with Lemma 2, this implies the required assertion.

Thus, system (3.8) satisfies the assumptions of Theorem 1 for dy2> 2 and if the
vector «® = {{;, - .., Hs) 1S non~resonant then the averaged solutions of system (3.8} are
curves of type (1.7) with A, = wu,’. The averaged solutions of Eq.(3.3) are the curves

u)= 3 Veysin @+ v b (@)

4. Proof of Theorem 1. To abbreviate the discussion we omit the dependence of the
Hamiltonian on &, all estimates in this section are uniform in e (0, 1]

Transform system (1.3) from the variable z to variables (¢, & ¥) € O = I" X 05 R") X
O (Y,), where

i = gy (e Ha@ B0 )0 & = — o - Ha (@t )
y o= J (Ay + eV, H,y (¢, &, ¥) (4.1)

The tangent space to O,s at an arbitrary point is identified with 2.
Isolate the terms in H, that are linear in { and y:

Hy=g(@ +Eh () +<y, n{g + H g, §& )
Modifying Ha by a constant if necessary, we may assume that g =0 (the bar denotes
averaging over g& T™). Write the Hamiltonian of system (4.1} as follows:
H o= (A" -+ k) £+ Yo CAY, 9D + 28,
ha = (A v s Rna)y Hy=Hy 4 Hy
Hy=g@ +Er@+ <@ 1@ h=k—F

Continue the functional H, analytically to a complex domain of the form

04, 0, = Ua, X O (C") X 05, (Y35 6,>0
= {ge= C"/2aZ" || Tm ¢} < 8;}

where Y% is a complexxflcatlon of Y,. By condition 1 of Theorem 1, the following estimate
is true everywhere in 050,
JHA (@ B )|+ 1 VyHa (@ & 9 llagay, K€ (4.2)
Our assertion now follows from (4.2) and the Cauchy inequality.

Lemma 4. There exist 8, >0 and constants C,, €, C; such that for ge= U, and
(0 & S 0G.s
fe@ 1+ 1A+ TRl Hln{pilaey < 6
| Hs g, &, .51) SCUEP+HTyik? {4.3)

[VeHo (@, & )+ 11Vl (@0 & v lasa, < Co((E] -+ o Tla)

Define an auxiliary Hamiltonian £E, where
E = g (@) -+ Eoho (@) + <o Mo (D

The corresponding canonical transformation § is the displacement per unit time along
the trajectories of the Hamiltonian system with Hamiltonian eE:



g =eFfl Y =eFFab iy, ¥=12@) ¢4
F{ = hihoi(g), FY=Tn,(q)
TE Ohy (9) 580 (9) aﬂo (Q) 4.5
Fp= =i (8 +u L) (4.5

S is a canonical transformation, taking system (4.1) into the system with Hamiltonian
Hi(g. t yy=H(S{g & ) (see /3, 4/). Write § as follows: g g-+sg*, Ev E -+ e8!, yry -+
eyt. Then ¢* =F9 4 e.., B = Ft + e.., y = FY + ... . Therefore, putting(s.§.%) =2 (¢, 8, ¢) =2
and A" -+ ek, = v?, we can write the transformed Hamlltoman as

H1<z>=m2~§+—‘2~<Ay,y>+e(~(2§ (G- haroi) +

ot + (g "N“’f>) + <4y, Ino @) +
gl@) +&-hig)+ ym@d) + e, (2) + O ()

Let o!'e=R"® denote the vector with components o = w;%h;;. Since hy (g} = 8Ha (g, 0,
0)/8%;  and for any functional H'we have [q;, H'l= My0H/'/0%;, it follows that Ayhy; () = g
H, (g, 0, 0). Hence the vector w'is of the form (2.7).

Equating the expression in square brackets to zero, we obtain homological equations
for g, hy and m,:

8g, (9)o! = &' Vg, (9) = g (g) + eAg(q), Oy (g)0a' =R {g) +
edk (g) (4.6)

Mg (g)/80* — AJn, (g) = n (9) + edn (9) (4.7

where eAg, eAh and ¢An are admissible small increments.

Lemma 5. For some 8;>0,

a) there exist functions g, Ag,h, and Ak, analytic in U, and satisfying (4.6}, such
that everywhere in Us,

1Ag (@ |+ 1 AR (D 1< Ce, g () |+ 1R (@) 1 < Cp2 4.8

b) There exist mappings %, An, analytic in Us, and satisfying (3.7}, such that every-
where in U,

1100 (@) Naadgea, < CO7Y [1ANHlagay < Ce (4.9)
Proof. We will confine ourselves to proving the more difficult assertion (b). To that
end we define W ji‘m(q;j*izq»;)/]/ z. Then AJWJ."—'=:ttAJ.Wj=t. Expand the mappings mwenm and An

in terms of the basis elements W f:n(g)= SnT@Ww,* etc. Functions of s will denote
Fourier transforms with respect to g:

X @ =3 3@’

8=Z

and so on. It follows from Lemma 4 and known estimates for the decrease of the Fourier
coefficients of analytic functions (/14/, Sect.4.2) that |n(s)ly .4, < Cexp(—8,|s)). Hence there

N - A
exists a number ¢, =, (8, —&;) such that if

A= ¥ (&, M =C,Ine (45.10)
181530

then An satisfies estimate (4.9). Then the quantities n% (9  vanish for {s]> M,, while
for jsi< M,
& () = — iy E (Y035 F Ay 411
Since
folsTFa 2o s F i l—efads], o ﬁn}“l-’
it follows from condition 2 of the theorem that
fotes Fh 2o (s M+ Y0 (1 4 Clne ™™ — Crelne-t

Therefore, if ¢ is sufficiently small, the absolute value of the denominator in (4.11)
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is at least Yp(+|sp™¥™ and

0@ gy, + 10 @001 g < Co0™hy g Up, B lhe
{see /14/). Consequently, it follows from the estimate for Ay and the form of Eq.(4.7) that
1 AJn, @ lapay < Cop™ for g=U,. The estimate for u,{g) now follows from condition B.

As bfore, let S be the displacement operator along trajectories of (4.4) and let
8 (z) =z + ezt Then if z(f) is the trajectory of {4.4) with initial condition z, we have

1
ad={F@)dt, F=@FFFF)
[
Thus Lemma 5 implies the following
Lemma 6. There exists § >0 such that the mapping §: O,s — 0.5, is analytic for
se=[—sy, sol, 8, = dy + dsy + dy, 8y = dy -+ dy + ds. Moreover,

J <Gl B KO0 + Ny lhs)s Tt <<Cp2
Vses[—sp8) 1dS (@) flzp 2, < 2, 1148 (z)~ I —edF{z) liz,, 2, << Ce%p™?

{(we recall that & is assumed to be sufficiently small and the tangent space to O, is
identified with Z,).
Let z O 5, S (2) =z ez, Then

H(S(z) =0 E+ s CAy, p> + e[t — F) - o] +
e[{Ay, vt — F ] + 122 [{4y vy 4 e[ — 0g,/00* + gl +
& [(— koGt + h) - Els + & [(Ony/00" — AT 0y — 1 3]s +
& [H,(z J-e2*) — H, (2)]; 4 eH,y (3)

Dencte the functional in square brackets [.], (together with its coefficient) by AH.
Lemmas 5 and 6 imply the following.

Lemma 7. If z¢& Og,4, where & <8, then for j=14,..., 7
[AH |+ | VyAH Jlapa, < Cep?
Thus,
H(S(z) =0 4+ 1o (Ay. > + 2l () + eH, (2)
where the functionals H,({z) and H,(z) are analytic in 0Os  and
VH @+ 1Yo H s (3 laea, 0078 (442
The transformed system of equations may be written as

g; = ot ehgy (9fOF Nell -+ H ) (4.13)
&) = — ehyy (8/0q; el -+ H,) (414
¥ = J(Ay + 2V, Hy + eV, Hy) (4.15)

Since the mappings JV,H; and JV, H, are analytic (see (4.12) and Lemma 4}, this
system is obtained by perturbing the system ¢ = o!, £’ =0, y = J4, by a vector field
satisfying a Lipschitz condition. Since the unperturbed system defines a group of isometric
transformations of the domain G4, 8, 8; < 85, the solution of system (4.13)-({4.15) is unique
and exists at least up to the time at which the boundary of the domain 4,s, 1s reached
{see, e.g., /15/, p-105). Let {q{t), E(@®), y (1)) =2 (1) be the solution of the system such

that S (2" (0)) == 24 = {90, E0. Yo} By (4.14), Lemma 4, estimate (4.12) and the Cauchy in-
equality, we have

dIEM Vdt<eClep 2+ [EP -+ llpila® (4.18)
Let P be the linear operator carrying @7 into jhq*, j=1,2,..., Then
HPyll® = <Py, > =l yla? JAy, P> =10 (4.17).
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Multiplying Eq.(4.15}) by P2y {f) in Y (scalar product) and using (4.17), we obtain
o8y, PEyyjdt = e (IV H,, PY) -+ e TV Hy, PPy

By (4.12) and Lemma 4, the right-hand side of this equality does not exceed: Cellylh,
(e + 1& 1+ yla). Hence
dll yllafdt < Cy >+ e [ B 1+ el ylla) {4.18)

Assume that ly(Hla, + 1E4) | <L Then by (4.16), {4.18),
(@anlEM I+ e Ol < Ce U E 1+l ull, + ep™

Hence, by Gronwall's Lemma,
PEM +HUy e, < {ep™ -+ TEO) [+ 11y (0)1la,) eO® — ep™? (4.19)

By condition (2.5) and Lemma 6, | E(0) | 4+l y (0)ll, << Cyp~%®.  Therefore, if 020 a<4,
then for 0t L(e)=blne?(e(,) we have

[EOI+H Iy Ol <Cate®pe® (4.20)

Consequently, if & is sufficiently small, the solution 2’ {{) exists at least for 01K
L. If z,(t) = (g, + @', 0,0), it follows from (4.20) and (4.13}) that

112" {8) — 2 (1) o << Cye®Pp 7"
Therefore, by the estimates in Lemma 6,

WS (2" (@) — 24 (B lla, SN S (2" (1)) — S (24 I o 4 1} S (2 (1)) — 2w (g, <
202" (1) ~ 2 (O la, + Corp™ L O

But S(z (1)) = 2(f) is the solution of system (1.3} with initial condition 3,
Estimate {2.6) is proved if one puts x = 2b {and if & is sufficiently small).
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